Univerza v Liubljani

ViC@®S
bt sualgnitive
R ystemslab

Machine perception
Derivatives and edge detection

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za ra¢unalnistvo in informatiko,

Univerza v Ljubljani

Edge detection

* Goal: map image from 2D grayscale intensity pixel array into a set of

binary curves and lines.

e Why?

i)

&/}- {"\ R
=

*/; =

./

|
|

e
A gt

i
abstraction

~
/\‘-” Zfaa»

Robust, compact representation

Measurement

What constitutes an edge?

Anything that appears

Discontinuity of depth:
as an edge...

~ object borders

Local texture:

Shadows

Changes in 3D normal
orientation caused by
shape changes

What constitutes an edge?

Anything that appears
as an edge...

Operator that measures
a local intensity change:
Derivative

Edge presence is strongly
correlated with the local
intensity changes.

Machine perception

IMAGE DERIVATIVES

1D derivative: Intuition

1]
First order derivative ol T
% f(x) Maxima of first

ok . .
> / derivative
o W W A W W

0 10

Derivatives and convolution

* A partial derivative of a continuous 2D function f(X,y) :

of (X, y):lim f(X+e&,y)—T(X,Y)

8)(e—0 E

* For a discrete case, approximate by using finite differences:

a(xy) Tx+Ly)-1(xY)
ox 1

e Question: If implemented by convolution, what would the convolution kernel for
derivative look like? (Next slide)

Partial derivatives: Implementation

8f($ay)m 37_"13 T L
ox ~
* 1 1 =

Vertical derivative

Oy 1

* -1
1

Partial derivatives: Image gradient

Image gradient: Vf — [gf) gf]
£ oY

Gradient points in direction of greatest intensity change:

V= [50] vi=1[09]

I__> T . y V= [%?%}

Gradient direction (orientation of edge normal):
_ —1(90f 5_f>

Gradient strength is defined by its magnitude:

Gradient magnitude

VA1l = /D7 + (3D’

Discrete world is noisy...

* Take asingle line in the image:

* Plot intensities w.r.t. pixels:

...

| | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

So where did the edge go!? Noise gets amplified by derivation...

Solution: Smooth the image first

Sigma = 50

+
Signal

=
Kernel

1400 1600 1800 2000

e -
S
=
* Sk 4 S .
hf o 3p
8 I ;._._ | | R | || |
0 200 400 600 800 1400 1600 1800 2000
E} T | T T T | T
d (1, : | |
*x f) &
3$(/ g 5 I R
QO] i i i i i [
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Where’s the edge? Find maximain map (h * f)

Remember convolution properties

* Derivatives: L (hx f) = (Lh) « f
Ox ox
Sigma= 0 : Sigma = 50
..]
5 O A S S
1
f i .
i = TSNP YE SURRRUR SO ROPP U U DU PRE SOOI S
T S A L] : f o
020 €0 60 60 10 20 o 60 0 w0 b
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ T e L Lo bl el bl e el e M) L el R L L o e e m e e e i arememee e
: : 1 1 1 1 1 1 1 1 1
h i 0 200 400 600 800 1000 1200 1400 1600 1800 2000
i T T T T T T T T T
1 .
: .
n —
] 0 h e i
1 @Q
hox f : Ox ¥
1
. . i | | | | | | |
| | | | | | | | | 1
020 @0 60 G0 100 120 o 60 a0 w0 600 800 1000 1200 1400 1600 1800 2000
R i ! ! ; ; ; ! ! ! !
d i 8
9 (hxf) ! =
& ¢ ! O h 3
: = gzt *) g
i o : : : : :
i Op----- | | | | i | | | A]
' 0 200 400 600 800 1000 1200 1400 1600 1800 2000

2D partial derivatives — naiive approach

1. Smooth the image by a 2D Gaussian filter

2. Take derivative w.r.t. x
Image Gaussian Blurred image

kernel

1 Blurring

ER o / .
gzl O
Blurred image perivative Derivative image
kernel '
2 Differentiating 1 Bl =

W.r.t. X

2D partial derivatives — smarter approach

ert

* Recall the convolution prop

Smarter way

* Recall the convolution propert

\ Can precompute
~analytically and discretize!

2D partial derivatives — smarter approach

* Recall the convolution property: g(l *G) = | *(?G)
X X

Naiive:

Smarter:

Gaussian partial derivatives

* Convolution kernels for taking partial derivatives
w.r.t. x and y:

2" 2

w.r.t. x

Some other popular kernels

-1 10 11171
Prewitt: M, = [-1]0 M, = 1] 0
-1 10 -1 -17-1
Lfo]1l L 211
Sobel: M, = 1 E | M, = I IE
Ljogpl 1]1-271-1
01) 1
Roberts: M: = 7715 v My = T

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My)
>> imagesc (outim) ;

>> colormap gray;

Previously at MP...

Glz,y]

e Linear filters: convolution, correlation -
e Nonlinear filters: Median filter Jk
EER v) RS e
| -— | G= >

level 0 (= original image)

Edges exist at different scales

Depends on what we’re looking for...

Thin edges or thick edges (leaves, branches, trunks,...)

Tuning the filter to the right scale

Parameter o is the “scale”/“width” of a Gaussian kernel that determines
the extent of smoothing, i.e., determines which edges will be removed.

B -
10
20
30

0 10 20 30 0 10 20 30

Tuning the filter to the right scale

How does o affect the derivative?

o =1 pixel o = 3 pixels

The enhanced/detected structures depend on the Gaussian kernel size.

Large kernels: detect edges on a larger scale.
Small kernels: detect edges on a smaller scale.

Machine perception

FROM DERIVATIVES TO EDGE DETECTION

Recall: The task of edge detection

* Goal: map image from 2D grayscale intensity pixel array into a set of

binary curves and lines.

/ N
LA ': Voo E‘&: ="
X Lo
J 2N
abstraction Robust, compact representation Measurement

Derivative enhances the edges, but these are not binary curves.

The task of edge detection

* Basic approach:

find strong gradients + post process

Desighing an edge detector...

|II

* Criteria of “optimal” edge detector:

1. Good detection: optimal detector minimizes probability of false positives
(edges caused by noise), and false negatives (missing true edges)

2. Good localization: detected edges should be close to the location of the true
edges.

3. Specificity: detector should return only a single point per true edge; minimize
number of local maxima around true edge.

True Poor robustness Poor Too many
edge to noise localization responses

The Canny edge detector [canny, IEEETPAMI 1986]

* Most popular edge detector in computer vision.

 Theoretical model of the edge:
A step function + Gaussian noise.

* Canny showed that first derivative of a Gaussian well approximates an
operator that optimizes a tradeoff between signal-to-noise ratio and
localization on the specified theoretical edge model.

Python:
>> cv2.Canny (image, Th lo, Th hi,..)

J. Canny, A Computational Approach To Edge Detection, |IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Canny edge detector

1. Filter image by a derivative of a Gaussian (smooth and enhance)

2. Calculate the gradient magnitude and orientation
§ =tan—1 (af/)
VAl = /(D7 + (3’

3. Thin potential edges to a single pixel thickness

4. Select sequences of connected pixels that are likely an edge

Canny: enhancing the potential edge pixels

Original image (Lena) Gradient magnitude

Canny: enhancing the potential edge pixels

Original image (Lena) ,Thresholding“: Set magnitudes lower
than a prescribed threshold to O.

Canny: thinning the edges

How to convert
these thick lines
into thinner - {
curves?

vt
4 ——Threshold

\-Edge

Not by thresholding...

Thinning by non-maxima suppression

] ® q @
Gradient /

& ® T o L
I

* For each pixel check if it is a local maximum along its gradient direction.

* Advanced: Actually, for q, we should check interpolated pixel values at p and r.

* Only local maxima should remain.

Canny: thinning the edges

Thinning
(non-maximum suppression)

Canny: thinning the edges

Problem: pixels along this
edge did not ,survive”
thresholding.

Thinning
(non-maximum suppression)

How to select a threshold?

Threshold + Thinning

Canny edge detector: Hysteresis thresholding

* Trace each contour separately
(e.g., using 4-connectedness).

* Apply two thresholds ky,, and ki,

e Start tracing a line only at pixels that
exceed a high threshold k.

* Continue tracing if the pixels exceed a lower
threshold k

low*

Iow

* Typical threshold ratio: ki, / K

Hysteresis thresholding

High threshold Low threshold Hysteresis thresholding
(strong edges) (weak edges)

37

The Canny edge detector in a nutshell

1. Convolve the image by a derivative of a Gaussian.
2. Calculate the gradient magnitude and orientation

3. Non-maxima suppression (NMS)
* Setlow gradient magnitudes to zero to reduce the number of candidates in NMS

* Thin edges to one-pixel width.

4. Trace the edges by hysteresis thresholding

* Apply a high threshold on the magnitude to initialize a contours and continue

tracing the contour until the magnitude falls below a low threshold.

Canny edge detector in “action”

£

Input image

thinned

Canny edge detector in “action”

thinned hreolded by hyseresi

Beyond Canny edge detector

e Since Canny’s publication, lots of new approaches for edge detection by
machine learning.

e Essentially, look at patches and learn what an edge is by inferring the
structure from intensities.

| el | el | N OB I.-.
. — |

Sketch Tokens, CVPR 2013. Joseph Lim, C. Zitnick, and P. Dollar

Beyond Canny edge detector

* Recently a CNN used as feature extractor and classifier

(il
i
-
O
(O]
P}
(0]
U p—
sy AT
f It
@© |‘)
= R]
g (Yy
~\ A A\ ./ \ ,.-\. -
9 (= [T
ey S —
(50t ~ o
— I(’ \ ._/ > \‘
.I‘___ | Il \
‘_7 ' '\ ",4
JaY > A/

Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018 L

Machine perception

EDGE DETECTION BY PARAMETRIC MODELS

Example: line fitting

 Why should we fit lines?
Many scenes are composed of straight lines

Problems with line fitting

* Noisy edges, multiple models:

* Which points correspond to
which line, if at all?

 Some parts of lines are not detected:
* How to find a line that connects the missing
points?
* Noisy orientation:

* How do we determine the unknown parameters
of true lines?

y = 1.6x + 21.5

Line fitting by voting for parameters

* Given a set of points, find the lines.
* How many lines?

* Which points correspond to which lines?

* Hough Transform is a voting technique that
answers these questions.

* Mainidea:
1. For each edge point compute parameters of
all possible lines passing through that point
2. For each set of parameters cast a vote

3. Select the lines (parameter combinations) that

receive enough votes.

Hough space: straight lines

y A b
y = mox =+ bo
ﬂ
bo -—-0
‘ | :
X mg m
Image space Hough (parametric) space

* Connection between spatial (X,y) and
Hough space (m,b):

* Alinein image corresponds to a point in the Hough space.

Hough space: straight lines

y A b
Yo ° b= —xom —+ yo
ﬂ
Xq X m
Image space Hough (parametric) space

* Connection between spatial (X,y) and
Hough space (m,b):
* Alinein image corresponds to a point in the Hough space.
* Mapping from image to Hough space:

 For a point (X,y), find all (m,b) for which this holds : y =mx + b
o slide credit: Steve Seitz

Hough space: straight lines

xbort
yt (oPY -7 b
—~ - -
Yy _--* (X1, y1)
- b b= —xgm + yo
e %% Dot
b=-xm+y,
X mopt m
Image space Hough (parametric) space

* Connection between spatial (X,y) and
Hough space (m,b):
* Alinein image corresponds to a point in the Hough space.
* Mapping from image to Hough space:

 For a point (X,y), find all (m,b) for which this holds : y =mx + b
o slide credit: Steve Seitz

Hough space: straight lines

Y1 e b Discretize the
a”” ‘Oo’@t
_9-~ v)(b — para meter
_ |2~ ?Cm 0P opt | | = —1
_-7 Y = >] —| Space...
Pt // T~
)2 Mopt r}l
Image space Hough (parametric) space

* Connection between spatial (X,y) and
Hough space (m,b):
* Alinein image corresponds to a point in the Hough space.
* Mapping from image to Hough space:

 For a point (X,y), find all (m,b) for which this holds : y =mx + b
o slide credit: Steve Seitz

Encode the line in polar coordinates

* Issue with Cartesian (m,b): infinite values for vertical lines!

[0,0] X . O : perpendicular distance
‘9) from the origin
d @: angle of perpendicular line
y with x axis

Xcosé—ysind=d

* Pointinimage = sinusoid in Hough space

Algorithm: Straight lines

USing pOIar representation: H: accumulator array (votes)
Xcos@d—ysin@=d R
Basic Hough transform: 0 _ l'l
1. Initialize H[d,d] = 0. - i -
2. For each edge point (X,y) in image 0 i
For = 0to 180 // over quantized values!! d

d =xcoséd—ysin &
H[d, 6] += 1

3. Find local maxima {d},pt, Hépt}i_l_N in accumulator array H[d,4].

4. Detected line is defined by: d(i)pt = xcosH};pt — Si?’l@(l;pt

Hough line demo

https://www.aber.ac.uk/~dcswww/Dept/Teaching/CourseNotes/current/CS34110/hough.html

ough transform in action

shown here.

Hough transform: Noise — binning

Coordinates of Votes
edge points in image

Are there any significant problems with the noise?

Hough transform: Noise — amplitude of votes

Coordinates of Votes
edge points in image

Random points still form some local maxima in the accumulator array!

Hough transform: Extensions

Extension 1: Use the gradient direction!

1. same as standard HT

2. For each edge point [X,Y]

&= gradient direction at (X,y) *
d =xcos@—-ysing
H[d,d] +=1

3. same as standard HT

4. same as standard HT

Reduces the number of degrees of freedom (dof)!

Hough transform: Extensions

Fi

-.u .SJE;""“ m "'-w \ !

Extension 1: Use the gradient direction!

1. same as standard HT

2. For each edge point [X,Y]

&= gradient direction at (X,y) *
d B XCOS@_ ySin 9 ..

HId, g +=1 °
3. same as standard HT

4. same as standard HT

Extension 2:

* Assign higher weight in votes to points with Igrge edge magnitude.
Instead H[d, 4] += 1, use H[d,d] += m(X,y).

 These extensions can be applied in general:

line, circles, squares, general shapes...

Hough transform for circles

 Circle parameters: center (a,b) and radius r
(x,—a) +(y, ~b)* =12

 Example of center detection at known radius r

Image space Hough space

Hough transform for circles

 Circle parameters: center (a,b) and radius r

(%, —a) +(y; ~b)> =1’

 Example of center detection at known radius r

A

b :
Intersection:
i Most points
i vote for this
: center.
- -

O X da

Image space Hough space

Hough transform for circles

 Circle parameters: center (a,b) and radius r
(x,—a) +(y, ~b)* =12

 Unknown radius r — How many dimensions in Hough Space?

A r
v
O > b
0 - 3
Image space Hough space

Hough transform for circles

 Circle parameters: center (a,b) and radius r
(x,—a) +(y, ~b)* =12

e Unknown radiusr

A T
¥.
o O, \ /
"‘ 35
""O ”‘: \ .
..O.‘ V = b
0 - (%,
= a
Image space ¢ Hough space

Hough transform for circles

 Circle parameters: center (a,b) and radius r
(x,—a) +(y, ~b)* =12

But assume we know the

Unknown radius r gradient direction!

A
Y

!
i

/

[x,y)

Image space Hough space

Hough transform for circles

For each edge pixel (X,y) :
For each radius value r:

For each gradient direction 6:
// or use the estimated direction only

a=X-—rcos(b)
b=y+rsin(6)
H[a,b,r] += 1(or the magnitude)

end for

end for

end for

Hough circle detection in action!

Original Edges (e.g., Canny) Votes for penny (x —a)?+(y, —b)?* =r?

Given a known radius:
r = 50 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.

Hough circle detection in action!

Original Edges (e.g., Canny) Votes for 25cent (x —a)®+(y, —b)* =r?

Given a known radius:
r = 80 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.

Hough circle detection in action!

Combined detections Edges (e.g., Canny) Votes for 25cent (x. —a)* +(y, —b)* =r?

Given a known radius:
r = 50 or 80 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.

Generalized Hough transform (GHT)

Building a model to detect objects by GHT — intuition:

* Assume we know how to detect parts (recognize+localize), i.e., eyes
and beak of an howl. Task: create an howl head detector.

* Encode parts by displacements to the neck center.

The owl head model:
Given a part, where is the neck center?

eye beak

Sl

Generalized Hough transform (GHT)

e Detection — intuition

The owl head model:

eye beak

Generalized Hough transform (GHT)

e Detection — intuition

The owl head model:

eye beak

GHT for shape-based models

* Define the shape model by edge points and a reference point.

M | Model shape Model learning:

For each edge point
calculate the
displacement vector to

the reference point:

Edge/gradient — —n.
direction Voting vector r a p| "

O

The owl head model:

eye beak A 7. Collect displacements
R ;l w9 \ in table, indexed by

gradient direction 6.

GHT for shape-based models

Detection:

For each edge point:

e Use its gradient orientation 0 to _ '
index into the table. //

e Use the displacement vectorsr
to cast a vote for the center.
/ / New image =
2]

v\se '\

Assumption: the only transformation is the translation (orientation+scaling are fixed)

Hough transform line detection: Practical advices

* First minimize irrelevant responses
(use only edges with significant magnitude of gradient)

* Appropriately discretize the parametric space

* Too coarse: votes from different lines fall into the same accumulator

* Too fine: losing lines — due to noise, collinear points cast votes into nearby (BUT DIFFERENT)

accumulators.

* Vote for neighboring cells as well
* Correct: cast a vote by a Gaussian or a bilinear interpolation

* Approximate: convolve the voting array by a Gaussian

* Use the gradient direction to reduce the number of free parameters

Hough transform: +/-

Pros

e Each pointis processed independently:

* robustness to partial occlusion,

* highly parallelizable.
* Robustness to noise: noise will unlikely contribute consistently to a single cell
* Can detect multiple instances of a single model in one pass.

Cons

 Time complexity increases exponentially with the number of free parameters.
* Spurious shapes may generate false local maxima in the parametric space.

* Quantization: Not particularly easy to choose a proper accumulator cell size —
Application dependent!

73

References

 David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition),

(prva izdaja dostopna na spletu)

* R. Szeliski,Computer Vision: Algorithms and Applications, 2010

* R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
2nd Edition, Cambridge University Press, 2004

e Kristen Grauman, ,Computer Vision“, lectures

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=David%20A.%20Forsyth&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Jean%20Ponce&ie=UTF8&search-alias=books&sort=relevancerank
http://www.cs.washington.edu/education/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf
http://szeliski.org/Book/

