Univerza *v Ljubljani* 





#### Machine perception Derivatives and edge detection



#### Matej Kristan



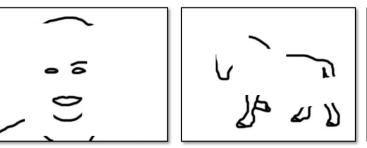
Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

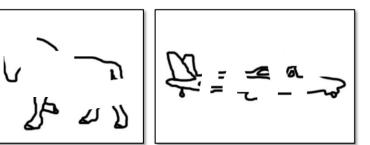


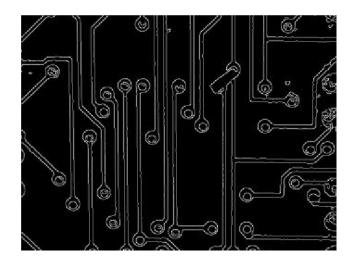
# **Edge detection**

- Goal: map image from 2D grayscale intensity pixel array into a set of binary curves and lines.
- Why?







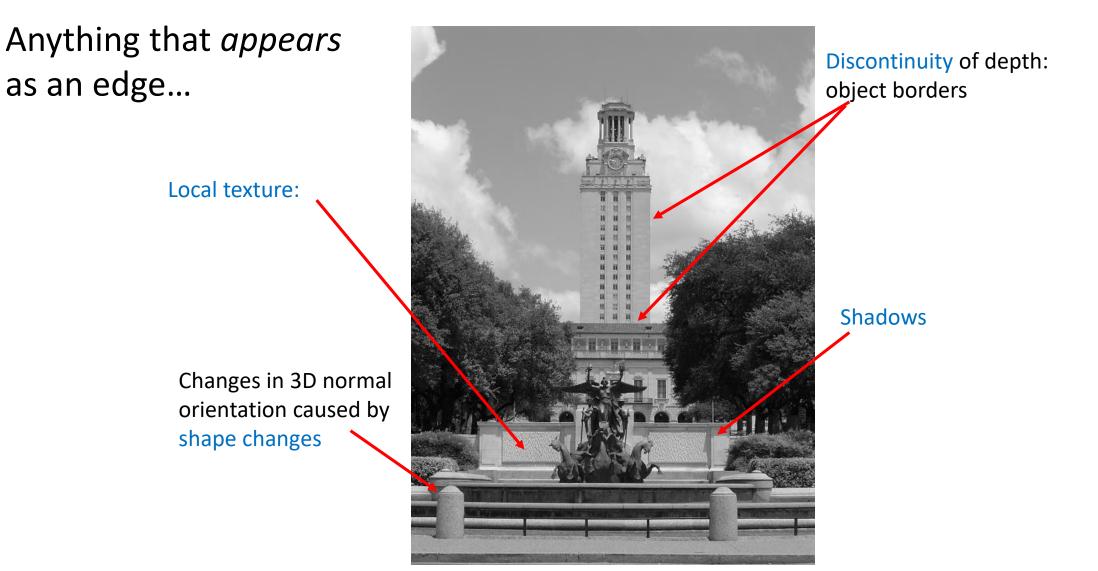


abstraction

Robust, compact representation

Measurement

## What constitutes an edge?

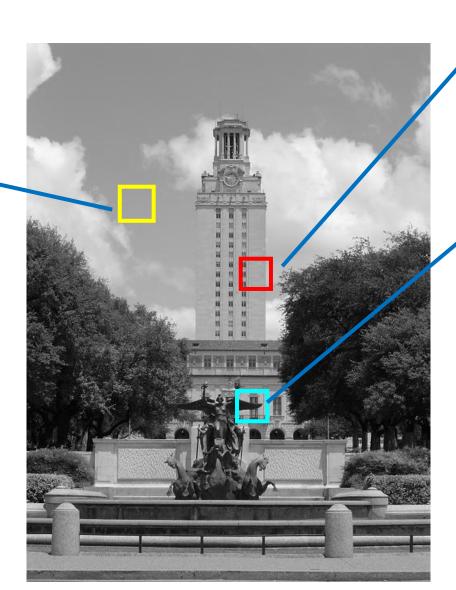


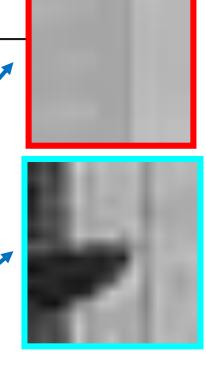
# What constitutes an edge?

Anything that *appears* as an edge...



Edge presence is strongly correlated with the local intensity changes.



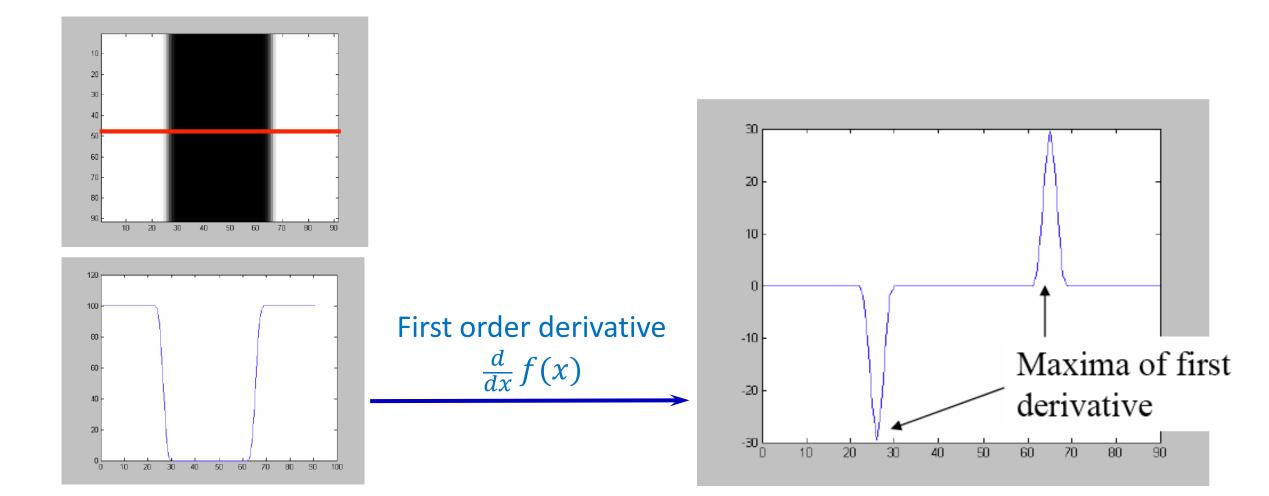


Operator that measures a local intensity change: Derivative

Machine perception

## **IMAGE DERIVATIVES**

### **1D derivative: Intuition**



## **Derivatives and convolution**

• A partial derivative of a continuous 2D function f(x,y):

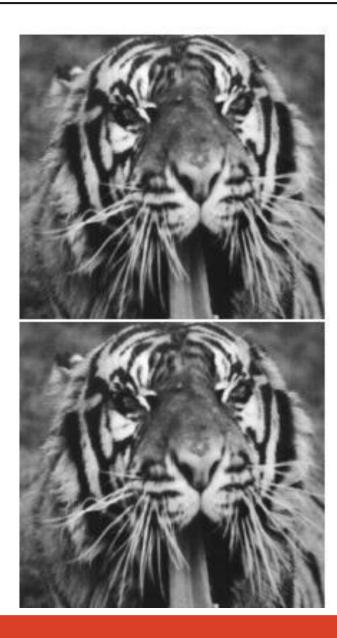
$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

• For a discrete case, approximate by using finite differences:

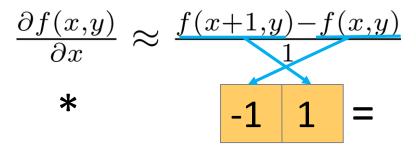
$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

• Question: If implemented by convolution, what would the convolution kernel for derivative look like? (Next slide)

# **Partial derivatives: Implementation**

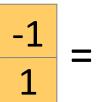


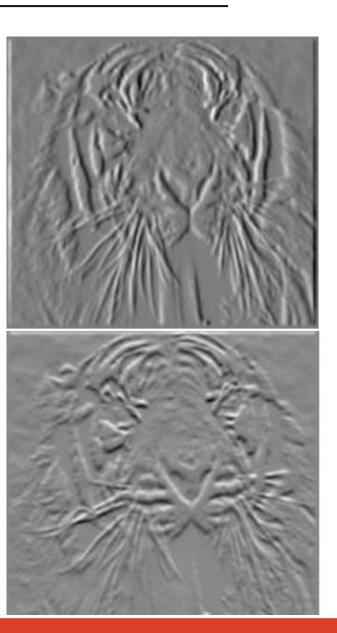
#### Horizontal derivative



 $\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x,y+1) - f(x,y)}{1}$ 

\*





## **Partial derivatives:** Image gradient

• Image gradient: 
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• Gradient points in direction of greatest intensity change:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \qquad \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

• Gradient direction (orientation of edge normal):

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• Gradient strength is defined by its magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

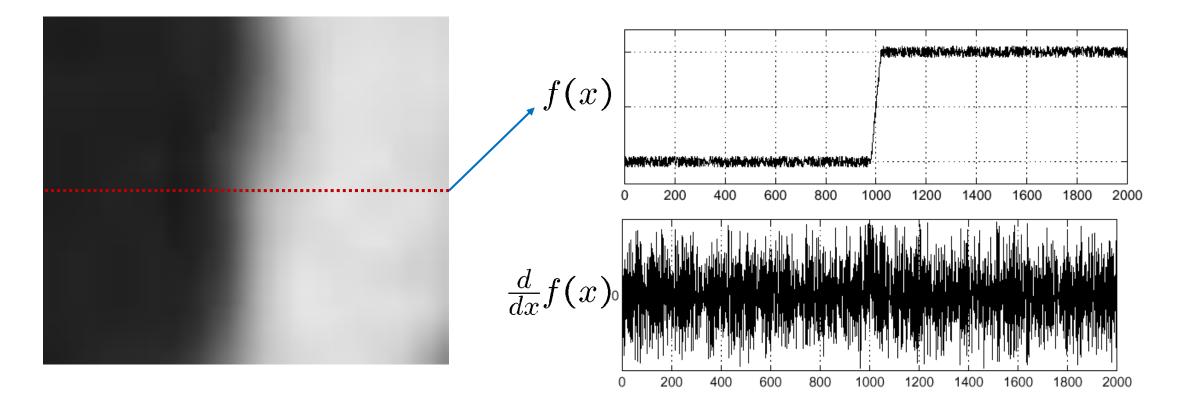


Gradient magnitude



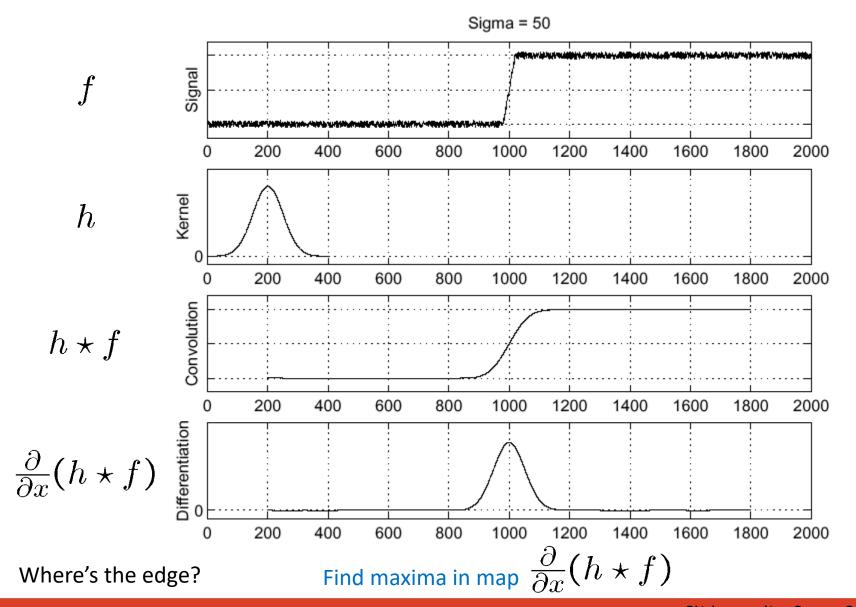
## **Discrete world is noisy...**

- Take a single line in the image:
  - Plot intensities w.r.t. pixels:



So where did the edge go!? Noise gets amplified by derivation...

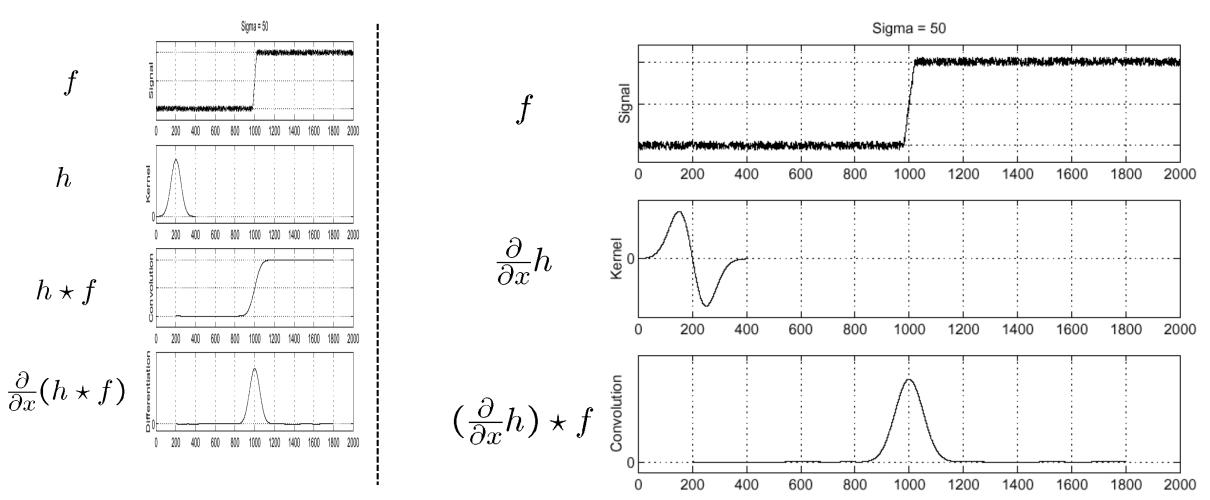
## **Solution: Smooth the image first**



Slide credit: Steve Seitz

## **Remember convolution properties**

• Derivatives:  $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$ 

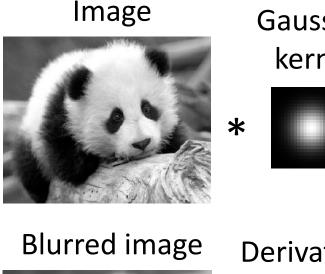


# **2D** partial derivatives – naiive approach

- 1. Smooth the image by a 2D Gaussian filter
- 2. Take derivative w.r.t. x

1 Blurring

2 Differentiating w.r.t. x



Gaussian kernel

#### Blurred image

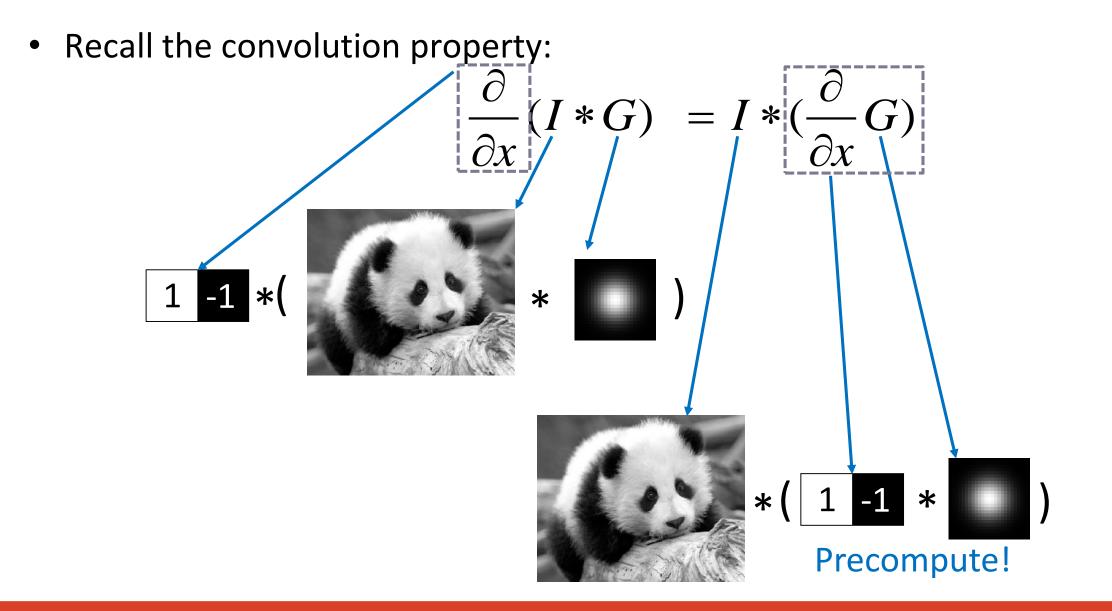


Derivative kernel

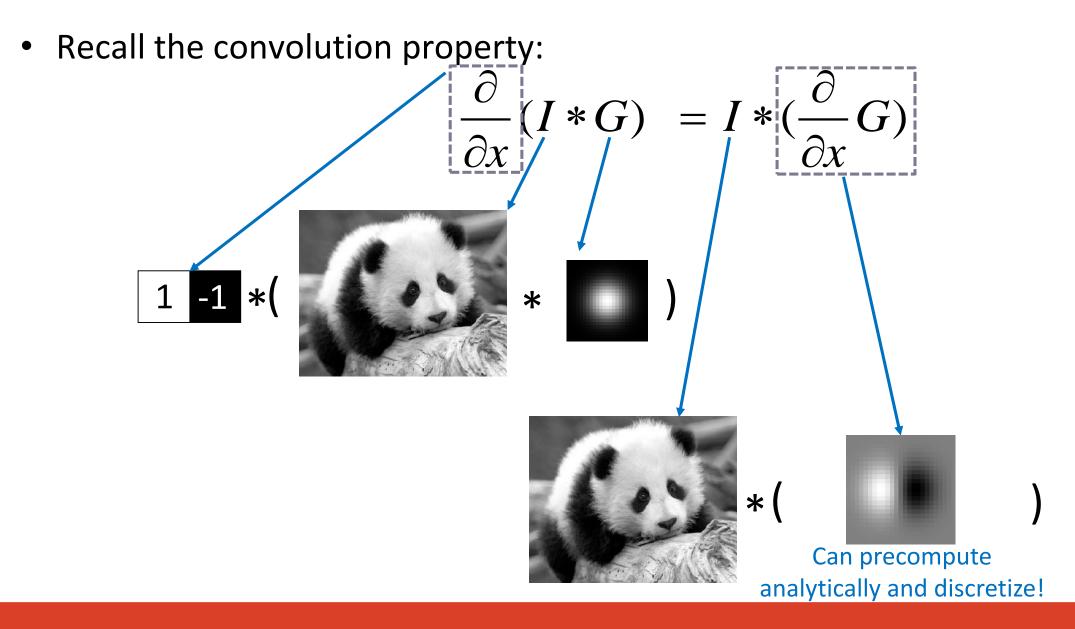
#### **Derivative** image



# **2D partial derivatives – smarter approach**



## **Smarter way**

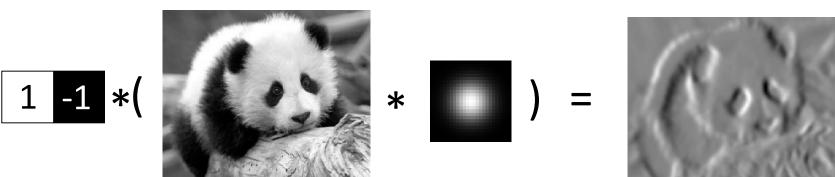


# **2D partial derivatives – smarter approach**

• Recall the convolution property:

$$\frac{\partial}{\partial x}(I * G) = I * (\frac{\partial}{\partial x}G)$$

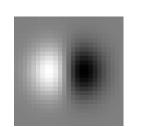
#### Naiive:



Smarter:



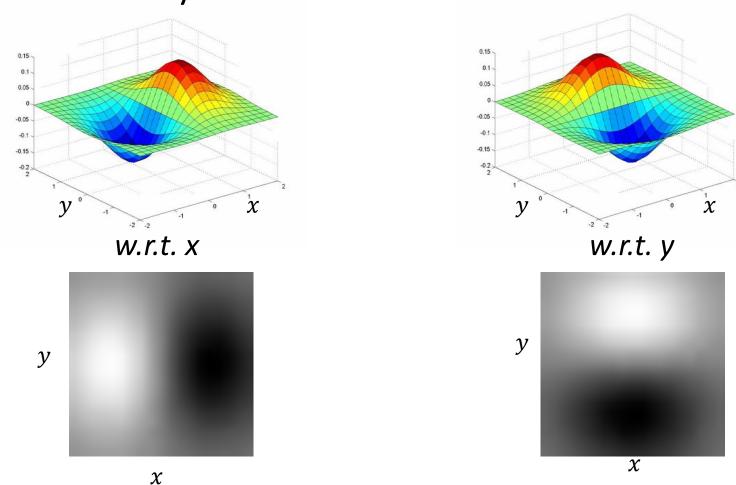




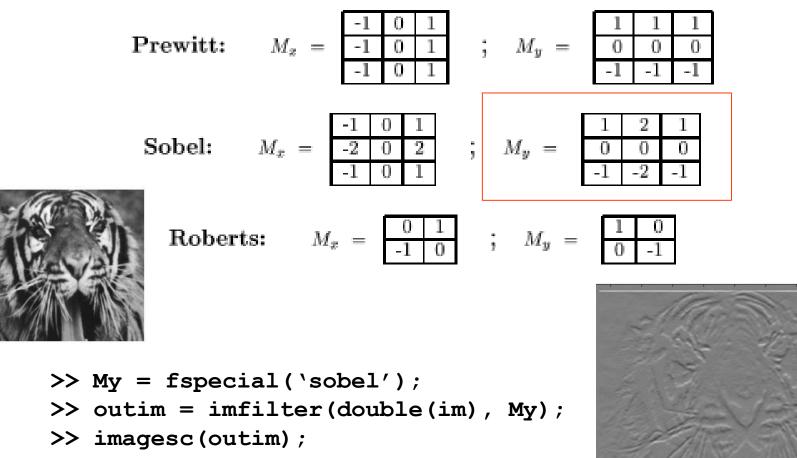


# **Gaussian partial derivatives**

• Convolution kernels for taking partial derivatives w.r.t. x and y:



### Some other popular kernels



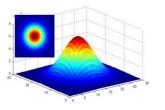
>> colormap gray;

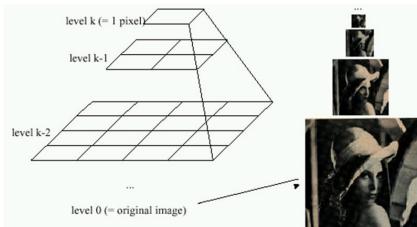


# **Previously at MP...**

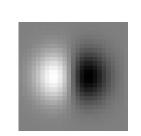
- Linear filters: convolution, correlation
- Nonlinear filters: Median filter  $\bullet$



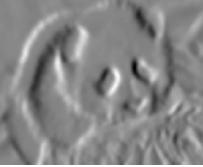


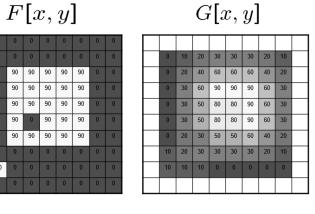


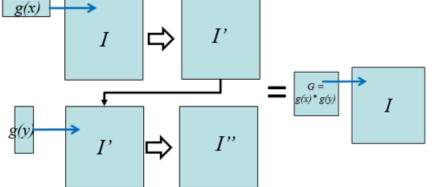












# **Edges exist at different scales**

Depends on what we're looking for...

Thin edges or thick edges (leaves, branches, trunks,...)





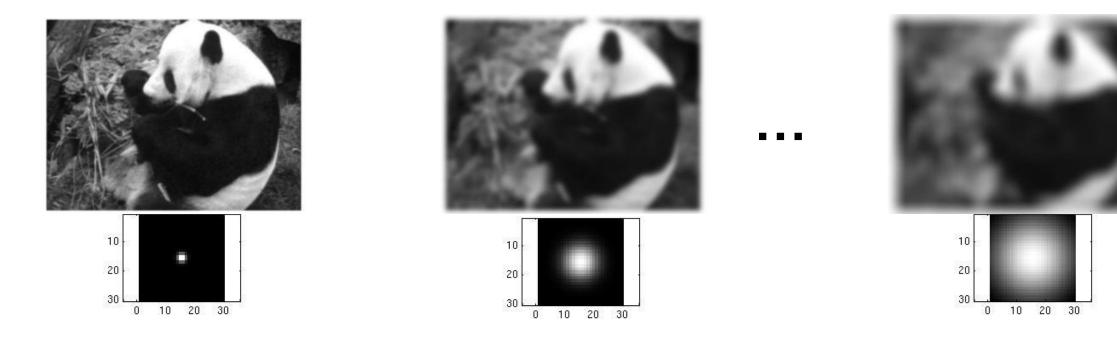






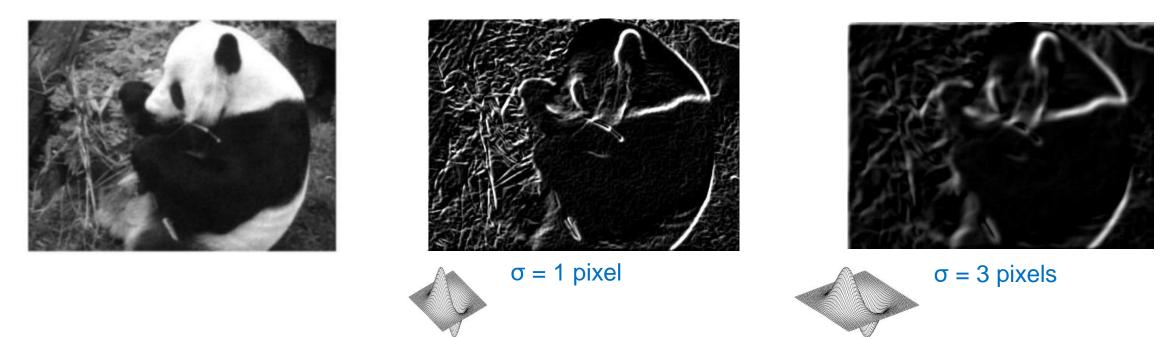
# **Tuning the filter to the right scale**

Parameter  $\sigma$  is the "scale"/"width" of a Gaussian kernel that determines the extent of smoothing, i.e., determines which *edges will be removed*.



# **Tuning the filter to the right scale**

#### How does $\sigma$ affect the derivative?



The enhanced/detected structures depend on the Gaussian kernel size.

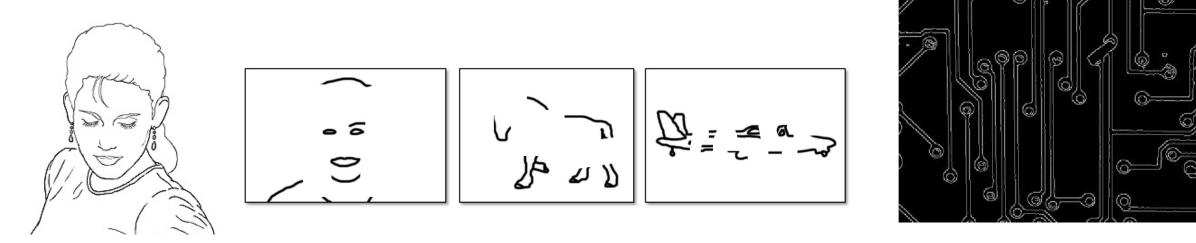
Large kernels: detect edges on a larger scale. Small kernels: detect edges on a smaller scale.

Machine perception

# FROM DERIVATIVES TO EDGE DETECTION

# **Recall: The task of edge detection**

• Goal: map image from 2D grayscale intensity pixel array into a set of binary curves and lines.



abstraction

Robust, compact representation

Measurement

Derivative enhances the edges, but these are not *binary curves*.

# The task of edge detection





$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

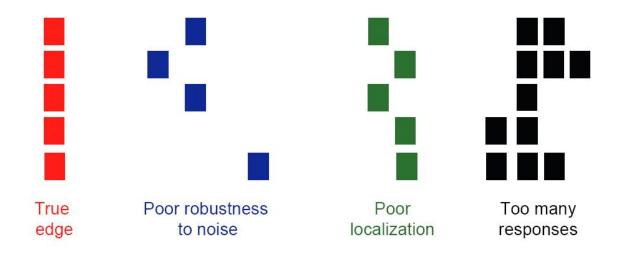


• Basic approach:

find strong gradients + post process

# **Designing an edge detector...**

- Criteria of "optimal" edge detector:
  - **1. Good detection:** optimal detector minimizes probability of false positives (edges caused by noise), and false negatives (missing true edges)
  - 2. Good localization: detected edges should be close to the location of the true edges.
  - **3. Specificity:** detector should return only a single point per true edge; minimize number of local maxima around true edge.



# The Canny edge detector [Canny, IEEETPAMI 1986]

- Most popular edge detector in computer vision.
- Theoretical model of *the edge*:
  A step function + Gaussian noise.
- Canny showed that first derivative of a Gaussian well approximates an operator that optimizes a tradeoff between signal-to-noise ratio and localization on the specified theoretical edge model.

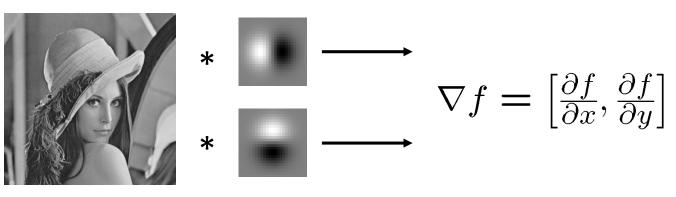
Python:

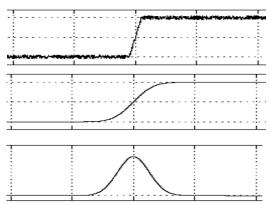
>> cv2.Canny(image, Th\_lo, Th\_hi,...)

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

# **Canny edge detector**

1. Filter image by a derivative of a Gaussian (smooth and enhance)





2. Calculate the gradient magnitude and orientation

 $\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$  $\|\nabla f\| = \sqrt{\left( \frac{\partial f}{\partial x} \right)^2 + \left( \frac{\partial f}{\partial y} \right)^2}$ 

3. Thin potential edges to a single pixel thickness

- $m > \Theta$
- 4. Select sequences of connected pixels that are likely an edge

# **Canny: enhancing the potential edge pixels**



Original image (Lena)



Gradient magnitude

# **Canny: enhancing the potential edge pixels**

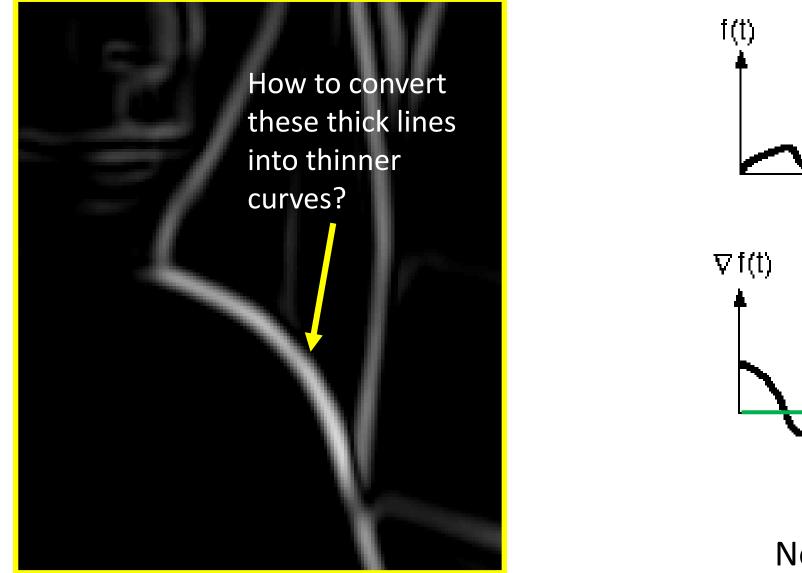


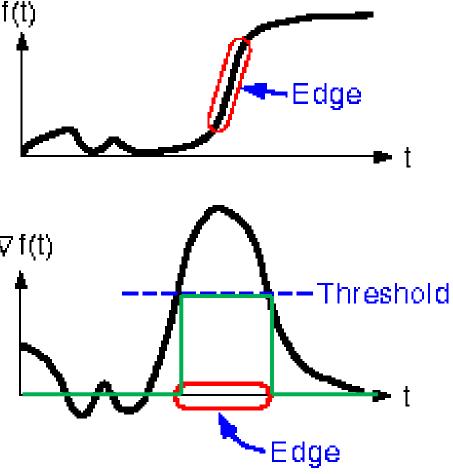
Original image (Lena)



"Thresholding": Set magnitudes lower than a prescribed threshold to 0.

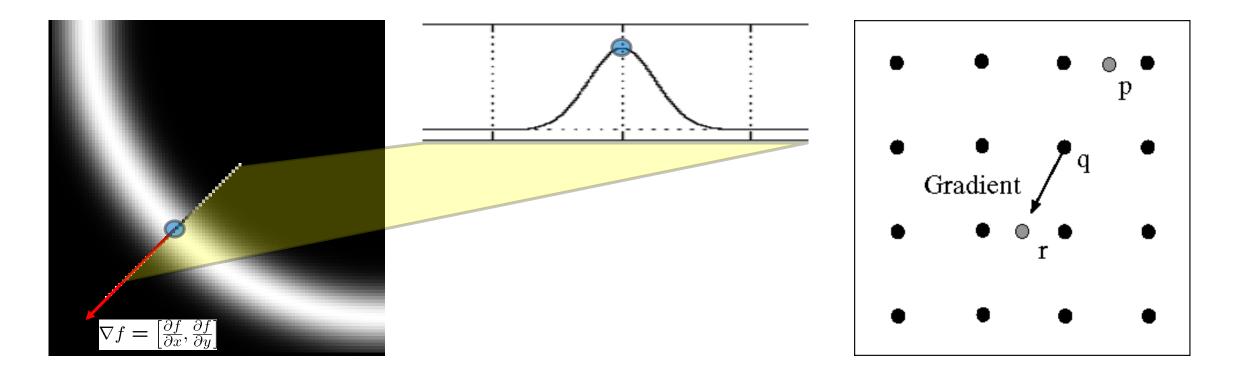
# **Canny: thinning the edges**





Not by thresholding...

# **Thinning by non-maxima suppression**



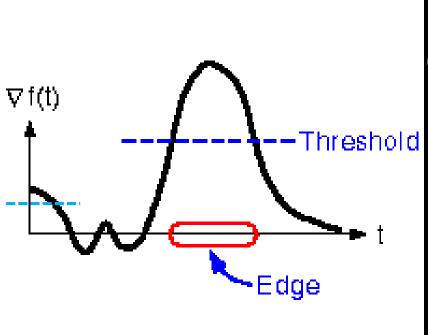
- For each pixel check if it is a local maximum along its gradient direction.
  - Advanced: Actually, for **q**, we should check interpolated pixel values at **p** and **r**.
- Only local maxima should remain.

## **Canny: thinning the edges**



Thinning (non-maximum suppression)

# **Canny: thinning the edges**

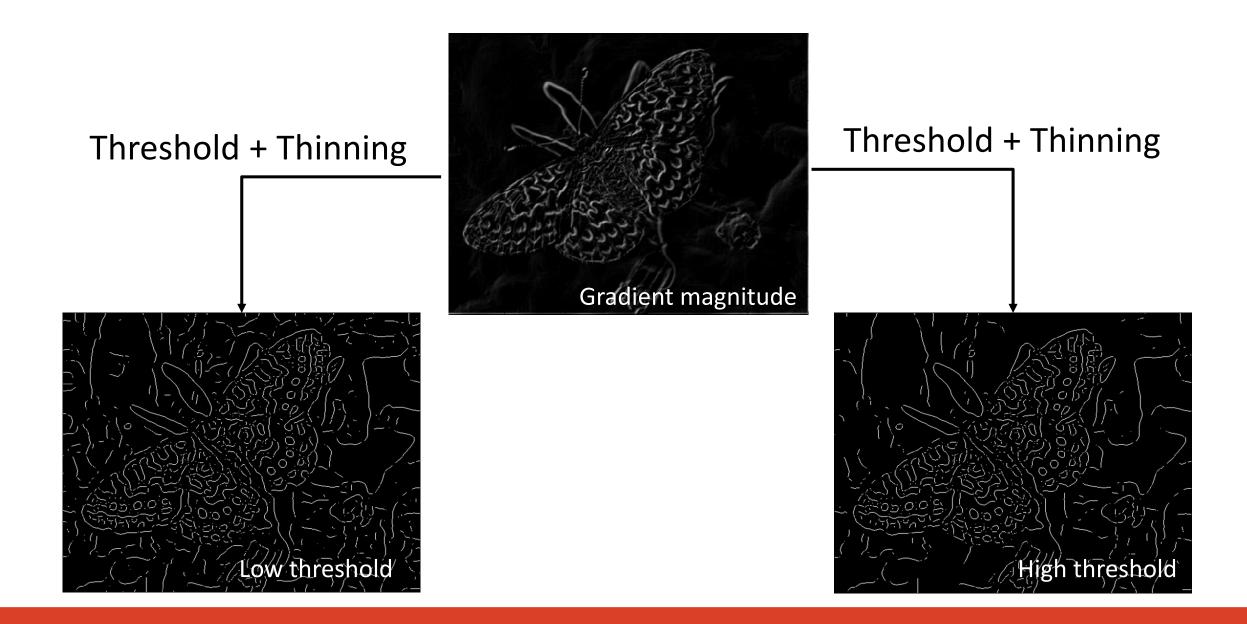




Problem: pixels along this edge did not *"*survive" thresholding.

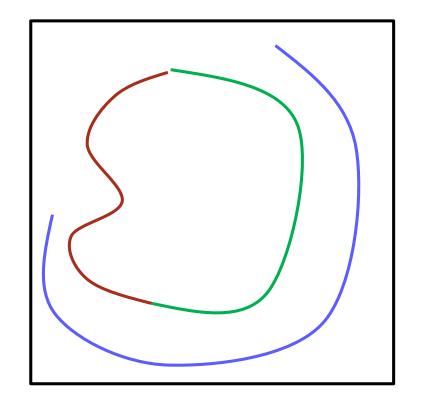
Thinning (non-maximum suppression)

#### How to select a threshold?



# **Canny edge detector: Hysteresis thresholding**

- Trace each contour separately (e.g., using 4-connectedness).
- Apply two thresholds k<sub>high</sub> and k<sub>low</sub>
  - Start tracing a line only at pixels that exceed a high threshold k<sub>high</sub>.
  - Continue tracing if the pixels exceed a lower threshold k<sub>low</sub>.
- Typical threshold ratio:  $k_{high} / k_{low} = 2$



#### **Hysteresis thresholding**



Original



High threshold (strong edges)



Low threshold (weak edges)



Hysteresis thresholding

#### The Canny edge detector in a nutshell

- 1. Convolve the image by a derivative of a Gaussian.
- 2. Calculate the gradient magnitude and orientation
- 3. Non-maxima suppression (NMS)
  - Set low gradient magnitudes to zero to reduce the number of candidates in NMS
  - Thin edges to one-pixel width.
- 4. Trace the edges by hysteresis thresholding
  - Apply a high threshold on the magnitude to initialize a contours and continue tracing the contour until the magnitude falls below a low threshold.

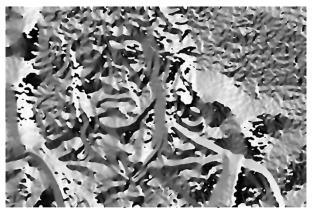
#### **Canny edge detector in "action"**



Input image



gradient magnitude



gradient angle





Thresholded by hysteresis

#### **Canny edge detector in "action"**



Input image



gradient magnitude



gradient angle



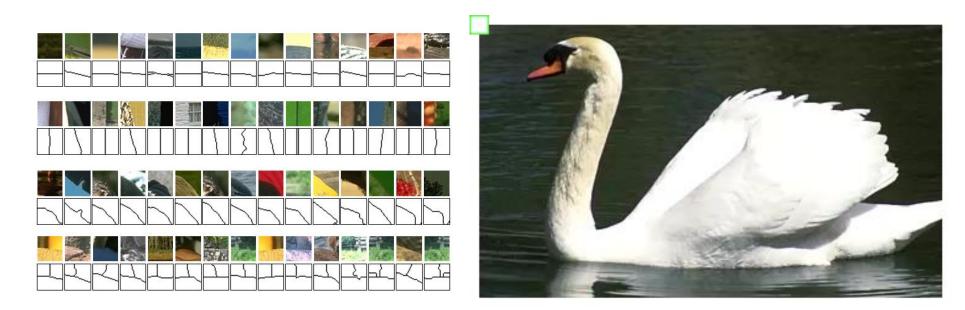
thinned



Thresholded by hysteresis

### **Beyond Canny edge detector**

- Since Canny's publication, lots of new approaches for edge detection by machine learning.
- Essentially, look at patches and learn what an edge is by inferring the structure from intensities.



Sketch Tokens, CVPR 2013. Joseph Lim, C. Zitnick, and P. Dollár

# **Beyond Canny edge detector**

• Recently a CNN used as feature extractor and classifier



Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018

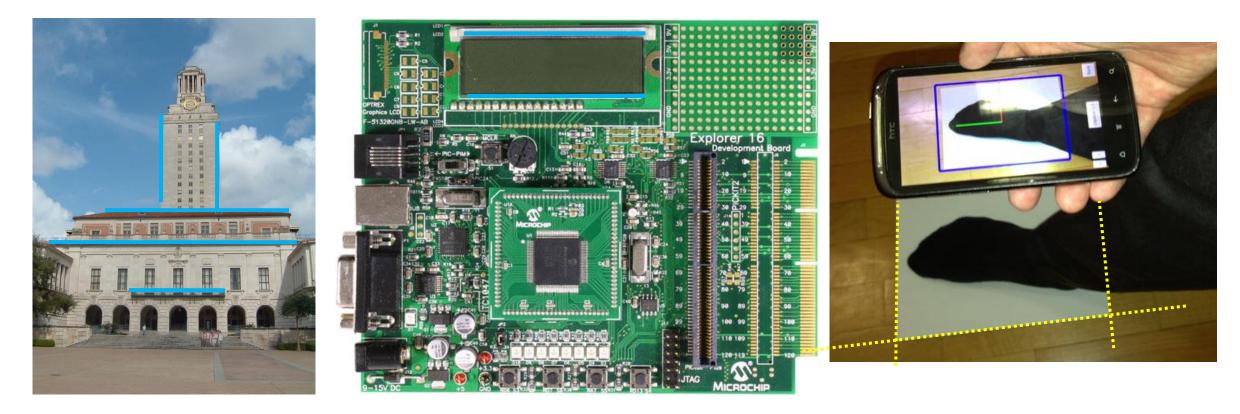
Machine perception

#### **EDGE DETECTION BY PARAMETRIC MODELS**

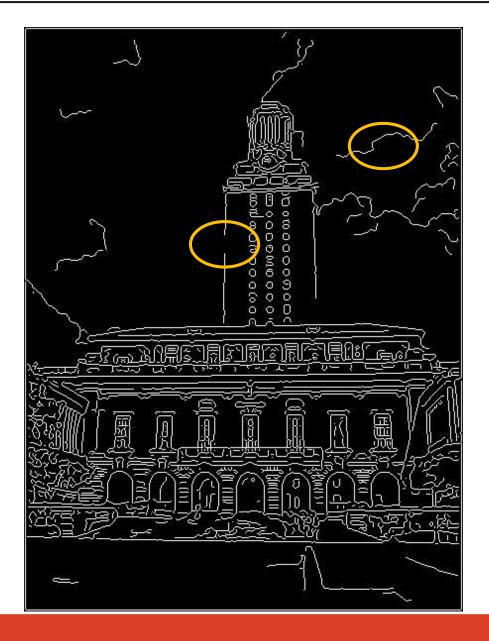
#### **Example: line fitting**

• Why should we fit lines?

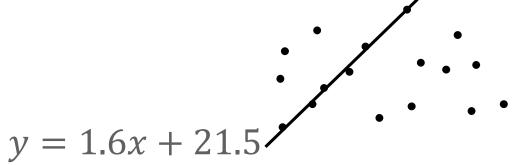
Many scenes are composed of straight lines



#### **Problems with line fitting**



- Noisy edges, multiple models:
  - Which points correspond to which line, if at all?
- Some parts of lines are not detected:
  - How to find a line that connects the missing points?
- Noisy orientation:
  - How do we determine the unknown parameters of true lines?

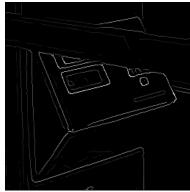


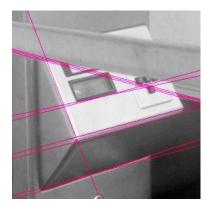
# Line fitting by voting for parameters

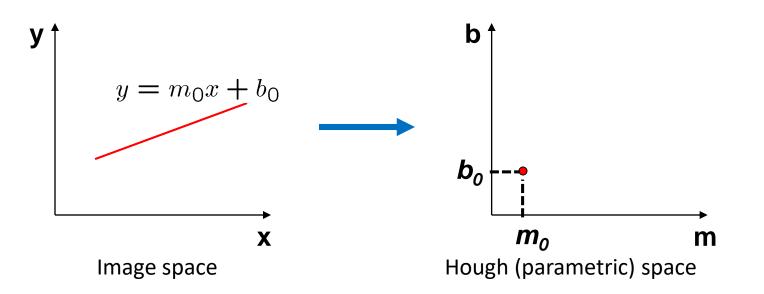
- Given a set of points, find the lines.
- How many lines?
- Which points correspond to which lines?

- *Hough Transform* is a voting technique that answers these questions.
- Main idea:
  - 1. For each edge point compute parameters of all possible lines passing through that point
  - 2. For each set of parameters cast a vote
  - 3. Select the lines (parameter combinations) that receive enough votes.

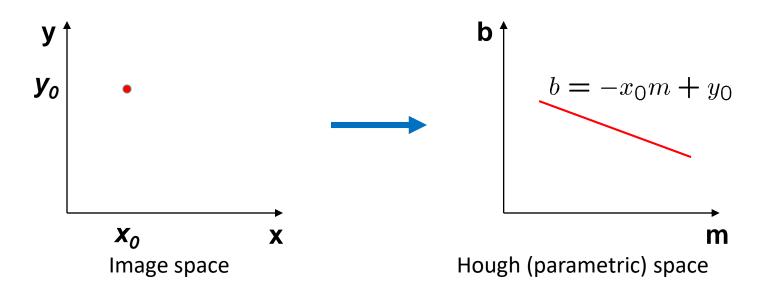




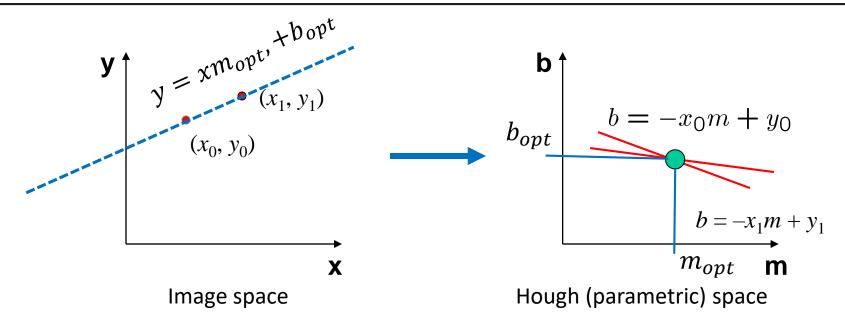




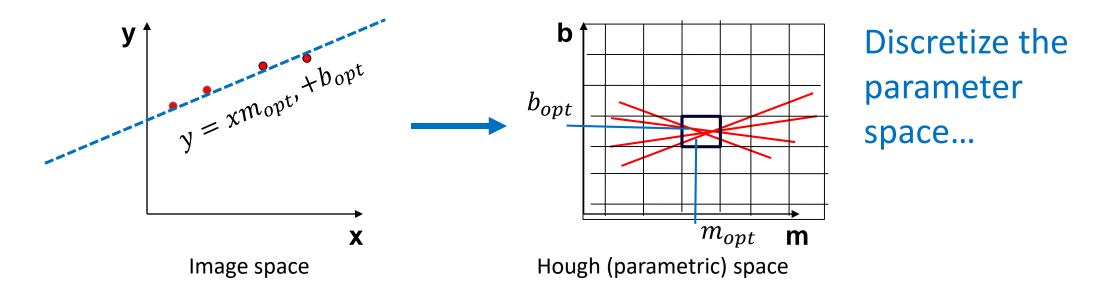
- Connection between spatial (*x*,*y*) and Hough space (*m*,*b*):
  - A line in image corresponds to a point in the Hough space.



- Connection between spatial (x,y) and Hough space (m,b):
  - A line in image corresponds to a point in the Hough space.
  - Mapping from image to Hough space:
    - For a point (x,y), find all (m,b) for which this holds : y = mx + b



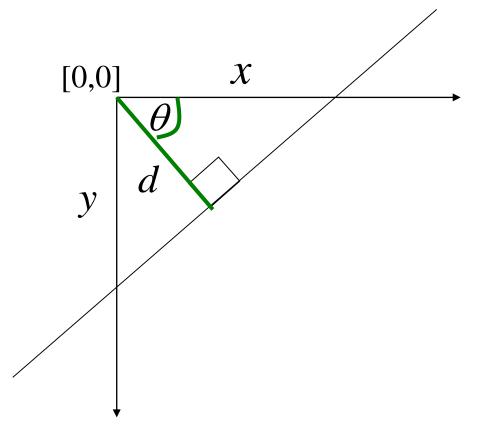
- Connection between spatial (x,y) and Hough space (m,b):
  - A line in image corresponds to a point in the Hough space.
  - Mapping from image to Hough space:
    - For a point (x,y), find all (m,b) for which this holds : y = mx + b



- Connection between spatial (*x*,*y*) and Hough space (*m*,*b*):
  - A line in image corresponds to a point in the Hough space.
  - Mapping from image to Hough space:
    - For a point (x,y), find all (m,b) for which this holds : y = mx + b

#### **Encode the line in polar coordinates**

• Issue with Cartesian (*m*,*b*): infinite values for vertical lines!



*d* : perpendicular distance from the origin

 $\theta$ : angle of perpendicular line with x axis

 $x\cos\theta - y\sin\theta = d$ 

• Point in image  $\Rightarrow$  sinusoid in Hough space

## **Algorithm: Straight lines**

Using polar representation:

$$x\cos\theta - y\sin\theta = d$$

#### Basic Hough transform:

- 1. Initialize  $H[d, \theta] = 0$ .
- 2. For each edge point (x,y) in image

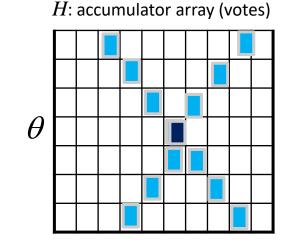
For  $\theta = 0$  to 180 // over quantized values!!

$$d = x\cos\theta - y\sin\theta$$

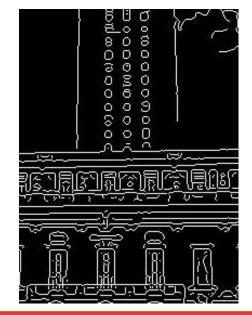
H[d, θ] += 1

- 3. Find local maxima  $\{d_{opt}^{i}, \theta_{opt}^{i}\}_{i=1:N}$  in accumulator array  $H[d, \theta]$ .
- 4. Detected line is defined by:  $d_{opt}^{i} = x cos \theta_{opt}^{i} sin \theta_{opt}^{i}$

#### Hough line demo

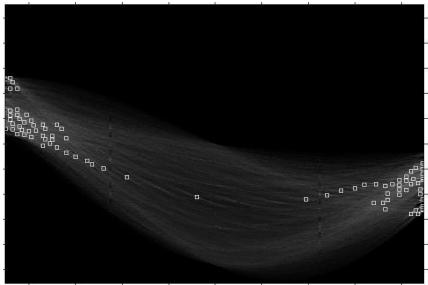


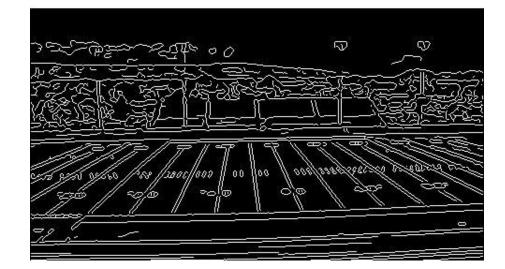
d



#### **Hough transform in action**



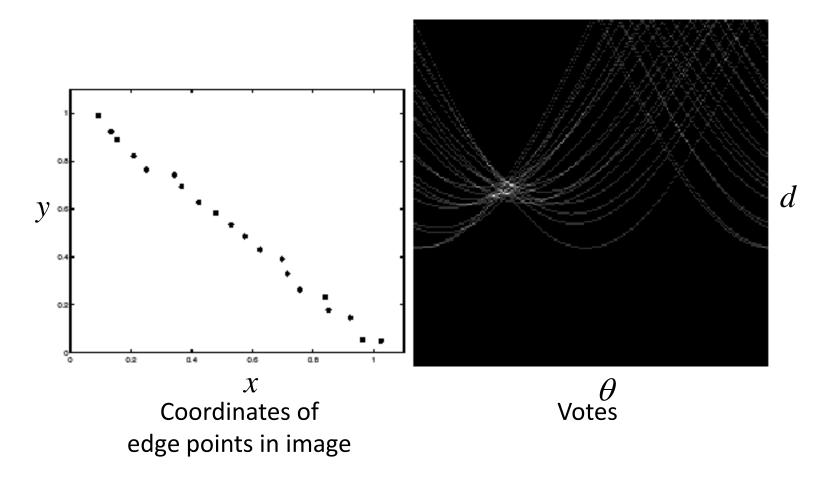






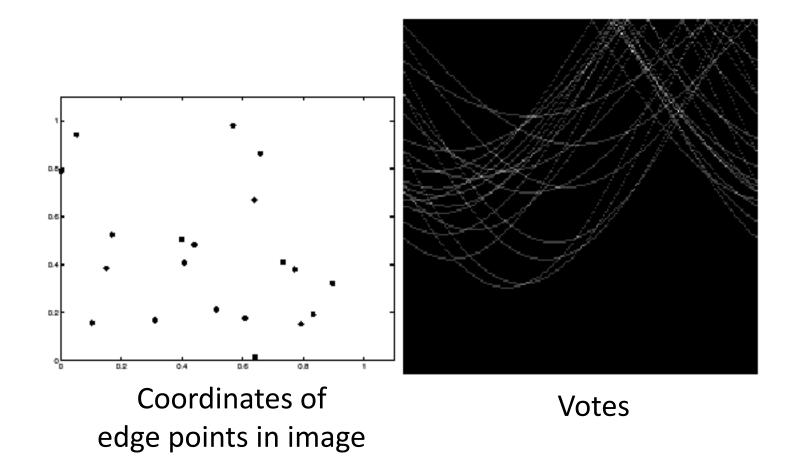
Only the longest segments along each detected line are shown here.

#### **Hough transform: Noise – binning**



Are there any significant problems with the noise?

#### **Hough transform: Noise – amplitude of votes**



Random points still form some local maxima in the accumulator array!

# **Hough transform: Extensions**

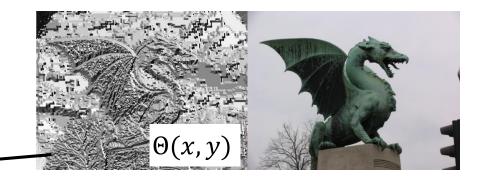
Extension 1: Use the gradient *direction!* 

- 1. same as standard HT
- 2. For each edge point [x,y]

 $\theta$  = gradient direction at (x,y)  $d = x \cos \theta - y \sin \theta$ 

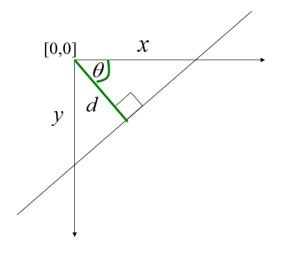
- $H[d,\theta] += 1$
- 3. same as standard HT
- 4. same as standard HT

Reduces the number of degrees of freedom (dof)!



$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$



# **Hough transform: Extensions**

#### Extension 1: Use the gradient *direction!*

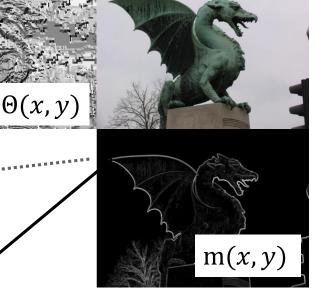
- 1. same as standard HT
- 2. For each edge point [x,y]
  - $\theta$  = gradient direction at  $(x,y)^{4}$  $d = x \cos \theta - y \sin \theta$
  - $H[d,\theta] += 1$
- 3. same as standard HT
- 4. same as standard HT

#### Extension 2:

• Assign higher weight in votes to points with large edge magnitude. Instead  $H[d, \theta] += 1$ , use  $H[d, \theta] += m(x,y)$ .

• These extensions can be applied in general:

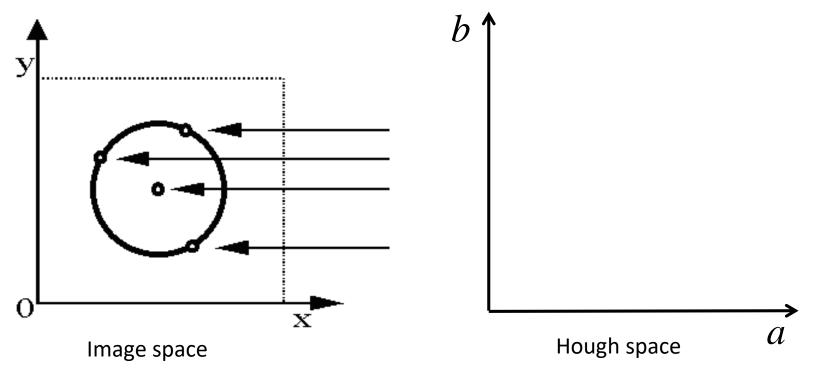
line, circles, squares, general shapes...



• Circle parameters: center (*a*,*b*) and radius *r* 

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

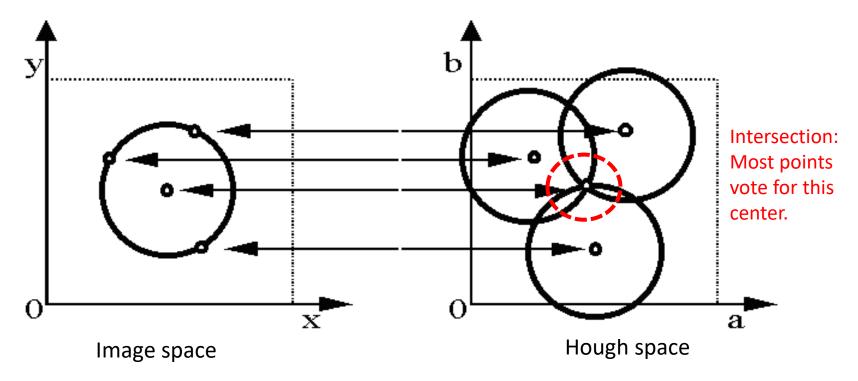
• Example of center detection at known radius r



• Circle parameters: center (*a*,*b*) and radius *r* 

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

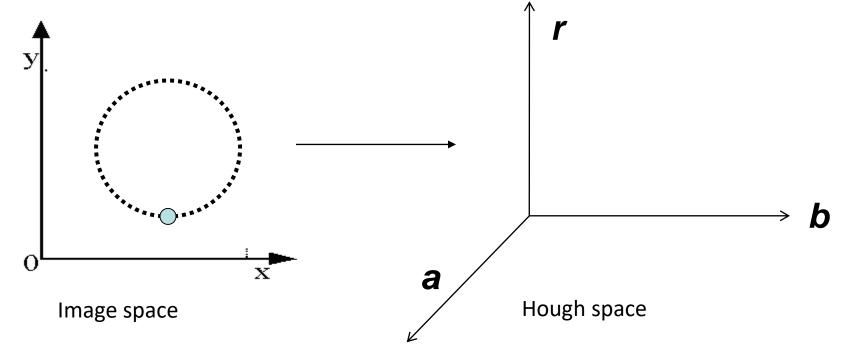
• Example of center detection at known radius r



• Circle parameters: center (*a*,*b*) and radius *r* 

```
(x_i - a)^2 + (y_i - b)^2 = r^2
```

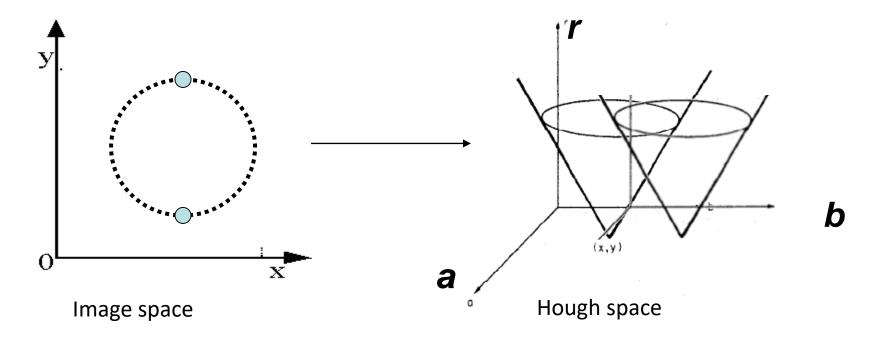
• Unknown radius *r* – How many dimensions in Hough Space?



• Circle parameters: center (*a*,*b*) and radius *r* 

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• Unknown radius *r* 

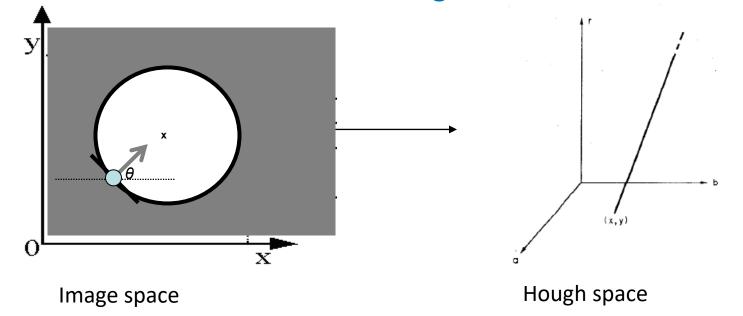


• Circle parameters: center (*a*,*b*) and radius *r* 

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• Unknown radius r

But assume we know the gradient direction!



For each edge pixel (x,y) :

For each radius value *r*:

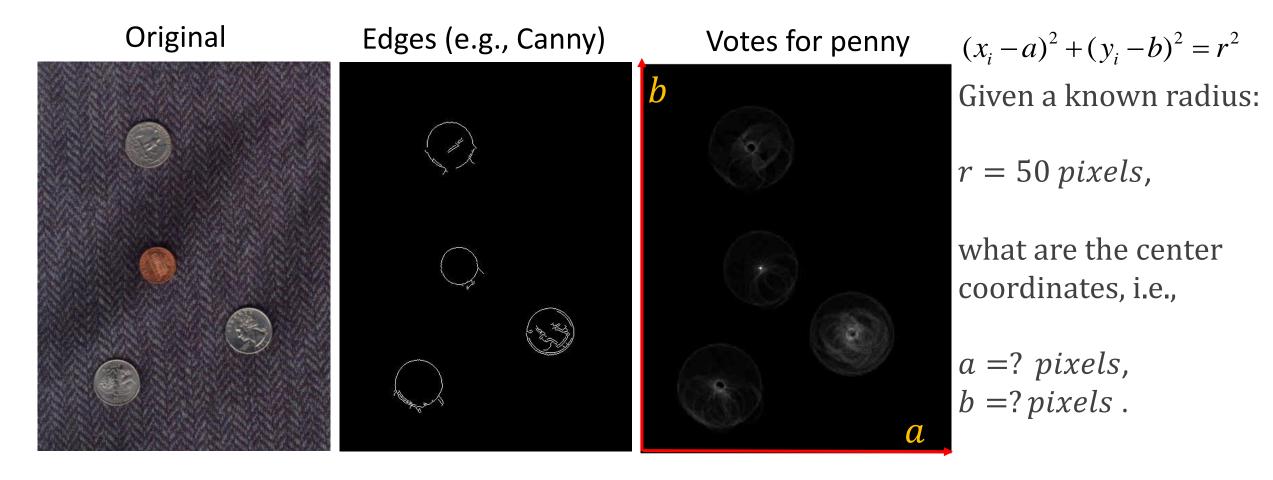
For each gradient direction  $\theta$ : // or use the estimated direction only  $a = x - r \cos(\theta)$   $b = y + r \sin(\theta)$ H[a,b,r] += 1(or the magnitude)

end for

end for

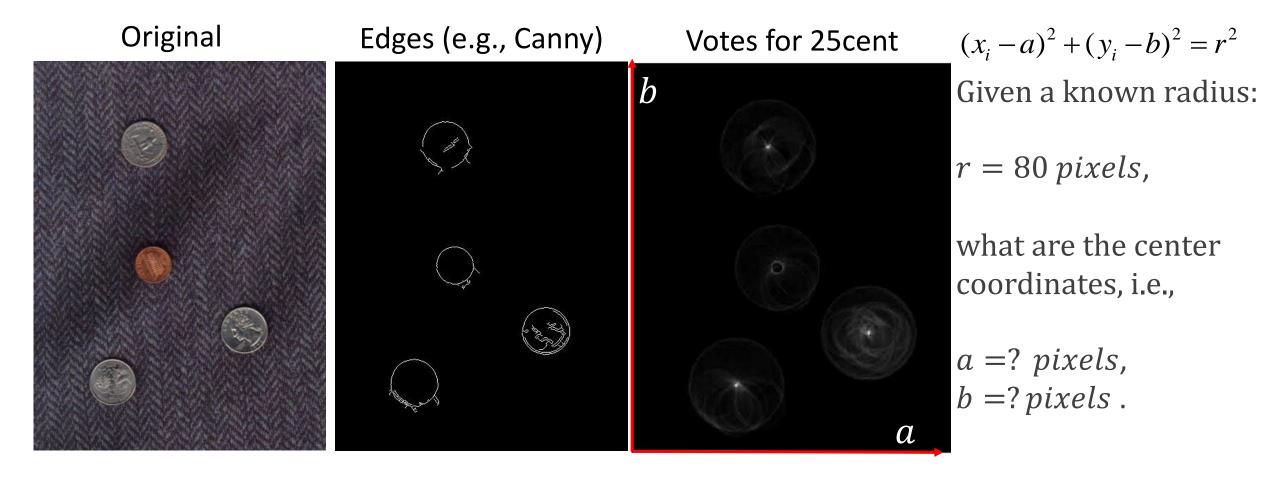
end for

#### **Hough circle detection in action!**



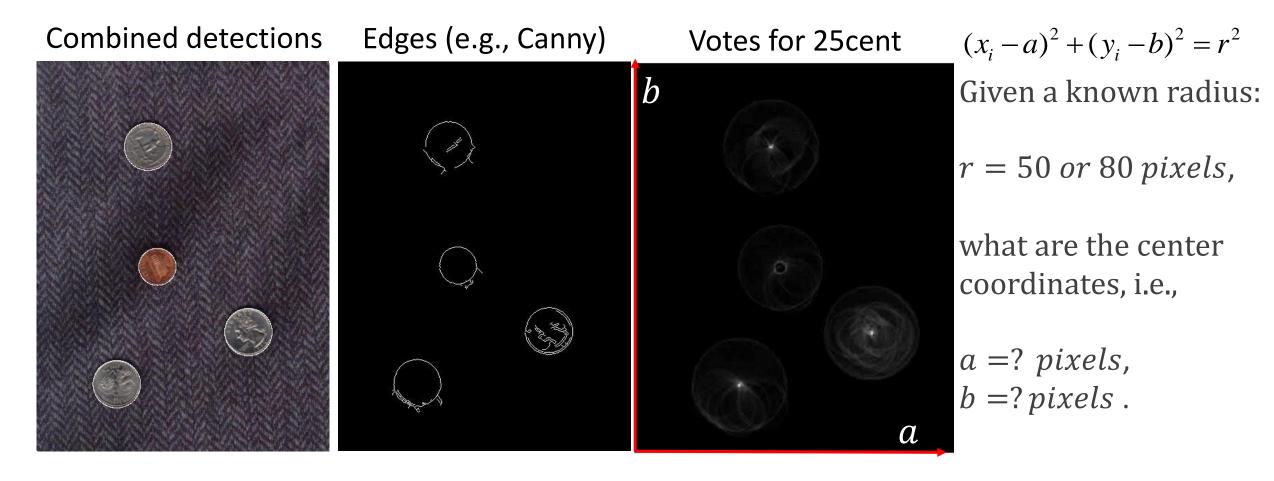
Comment: here we use a separate HT for each coin size.

#### **Hough circle detection in action!**



Comment: here we use a separate HT for each coin size.

#### **Hough circle detection in action!**

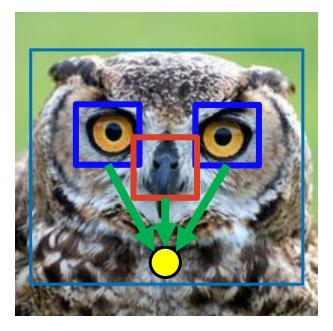


Comment: here we use a separate HT for each coin size.

### **Generalized Hough transform (GHT)**

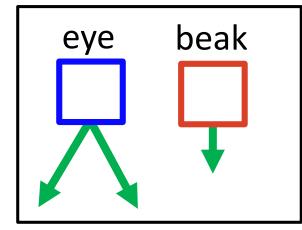
Building a model to detect objects by GHT – intuition:

- Assume we know how to detect parts (recognize+localize), i.e., eyes and beak of an howl. Task: create an howl head detector.
- Encode parts by displacements to the neck center.



The owl head model:

Given a part, where is the neck center?

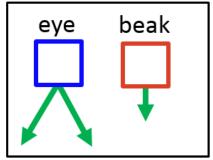


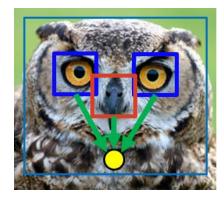
#### **Generalized Hough transform (GHT)**

• Detection – intuition



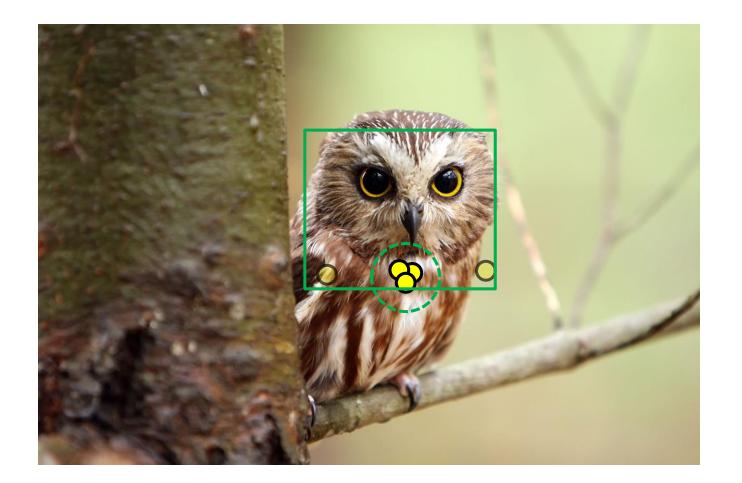
The owl head model:



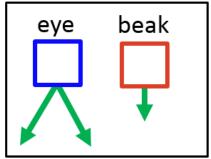


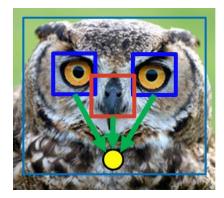
#### **Generalized Hough transform (GHT)**

• Detection – intuition



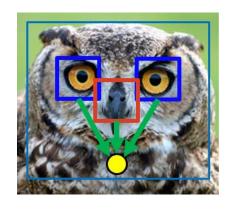
The owl head model:

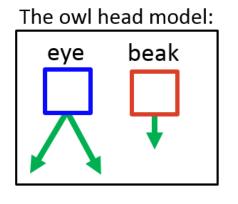


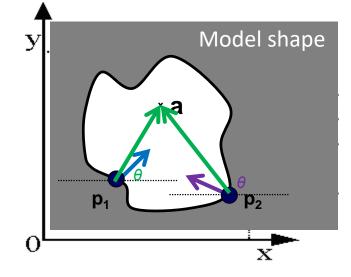


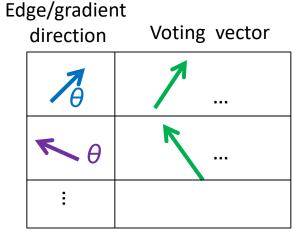
#### **GHT for shape-based models**

• Define the shape model by edge points and a reference point.









#### Model learning:

For each edge point calculate the displacement vector to the reference point:

 $\mathbf{r} = \mathbf{a} - \mathbf{p}_{\mathbf{i}}$ 

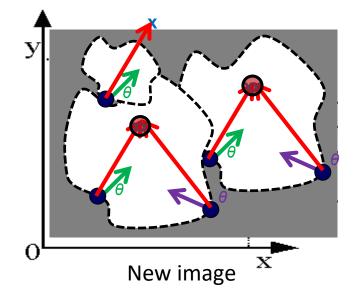
Collect displacements in table, indexed by gradient direction  $\theta$ .

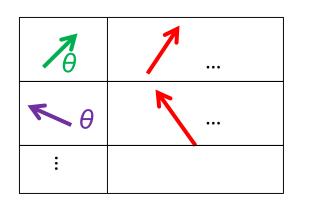
### **GHT for shape-based models**

#### **Detection:**

For each edge point:

- Use its gradient orientation  $\theta$  to index into the table.
- Use the displacement vectors **r** to cast a vote for the center.





Assumption: the only transformation is the translation (orientation+scaling are fixed)

### Hough transform line detection: Practical advices

• First minimize irrelevant responses

(use only edges with significant magnitude of gradient)

- Appropriately discretize the parametric space
  - Too coarse: votes from different lines fall into the same accumulator
  - Too fine: losing lines due to noise, collinear points cast votes into nearby (BUT DIFFERENT) accumulators.
- Vote for neighboring cells as well
  - Correct: cast a vote by a Gaussian or a bilinear interpolation
  - Approximate: convolve the voting array by a Gaussian
- Use the gradient direction to reduce the number of free parameters

# Hough transform: +/-

#### <u>Pros</u>

- Each point is processed independently:
  - robustness to partial occlusion,
  - highly parallelizable.
- Robustness to noise: noise will unlikely contribute consistently to a single cell
- Can detect multiple instances of a single model in one pass.

#### <u>Cons</u>

- Time complexity increases exponentially with the number of free parameters.
- Spurious shapes may generate false local maxima in the parametric space.
- Quantization: Not particularly easy to choose a proper accumulator cell size Application dependent!

#### References

- <u>David A. Forsyth</u>, <u>Jean Ponce</u>, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja dostopna na spletu)
- R. Szeliski, <u>Computer Vision: Algorithms and Applications</u>, 2010
- R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, 2004
- Kristen Grauman, "Computer Vision", lectures