Univerza *v Ljubljani*

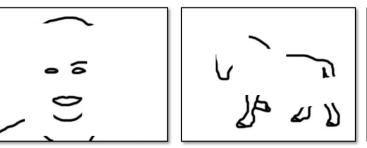
Machine perception Derivatives and edge detection

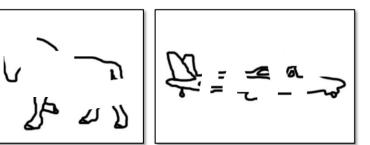
Matej Kristan

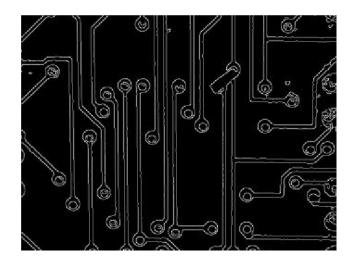
Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Edge detection

- Goal: map image from 2D grayscale intensity pixel array into a set of binary curves and lines.
- Why?





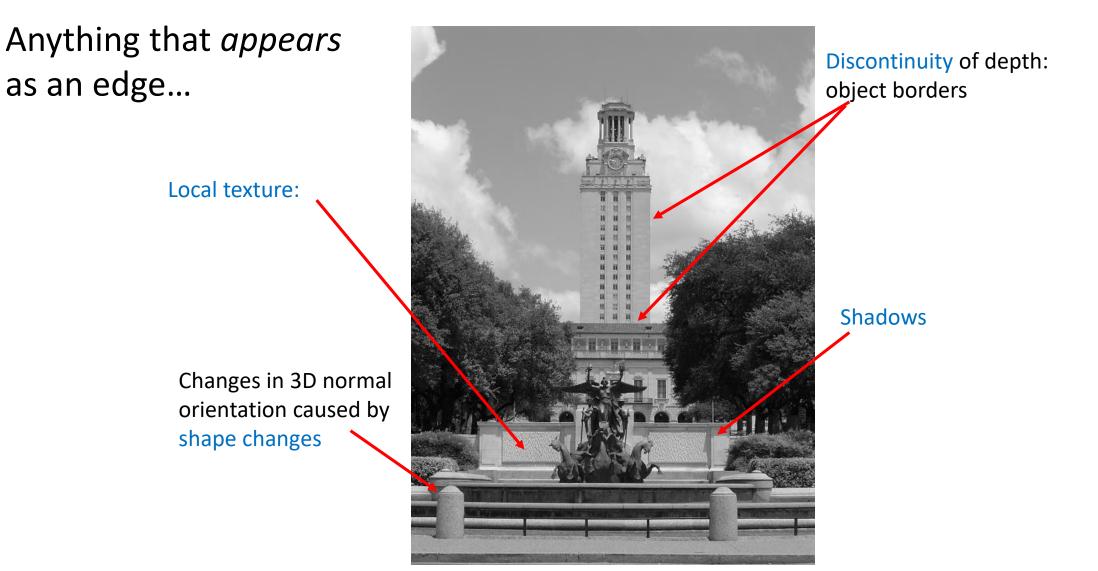


abstraction

Robust, compact representation

Measurement

What constitutes an edge?

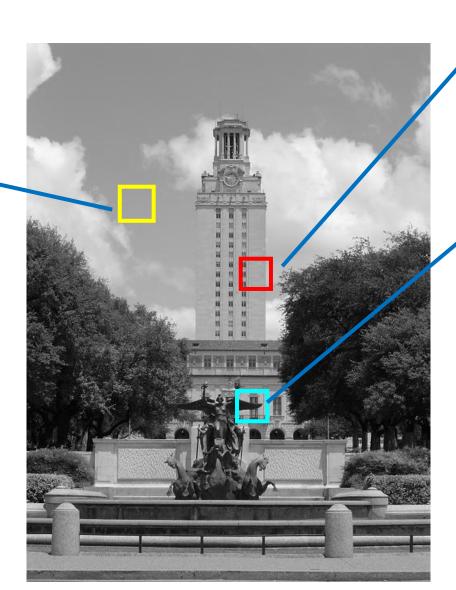


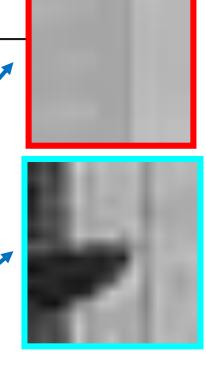
What constitutes an edge?

Anything that *appears* as an edge...



Edge presence is strongly correlated with the local intensity changes.



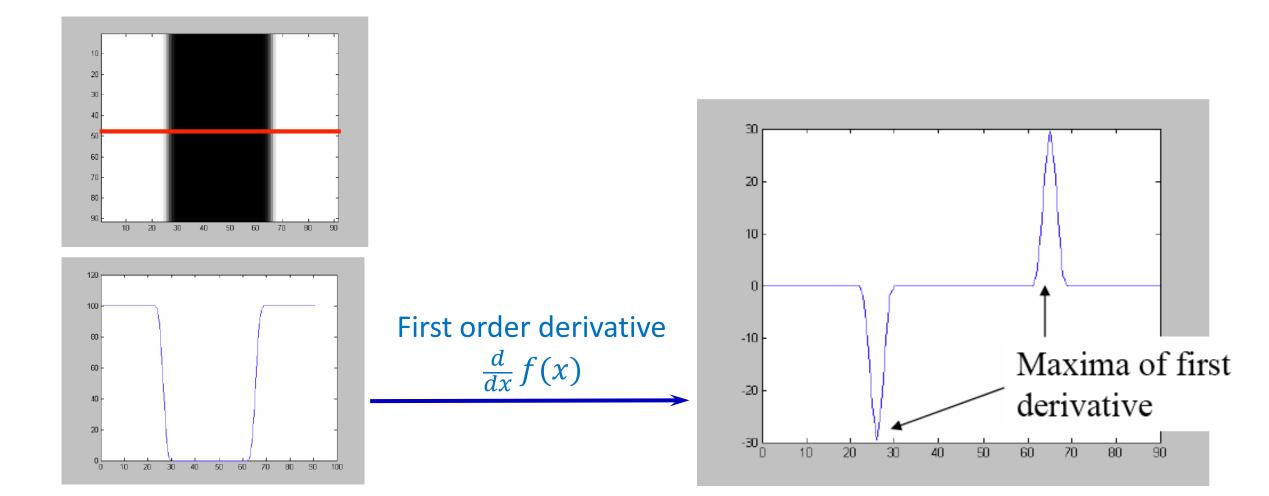


Operator that measures a local intensity change: Derivative

Machine perception

IMAGE DERIVATIVES

1D derivative: Intuition



Derivatives and convolution

• A partial derivative of a continuous 2D function f(x,y):

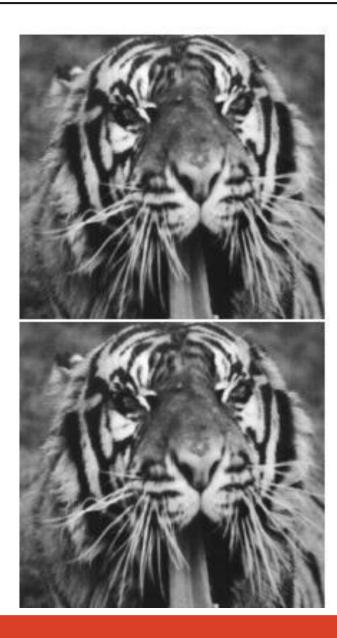
$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

• For a discrete case, approximate by using finite differences:

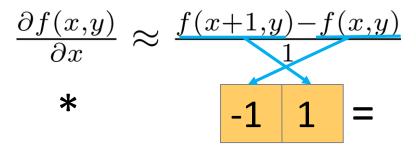
$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

• Question: If implemented by convolution, what would the convolution kernel for derivative look like? (Next slide)

Partial derivatives: Implementation

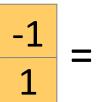


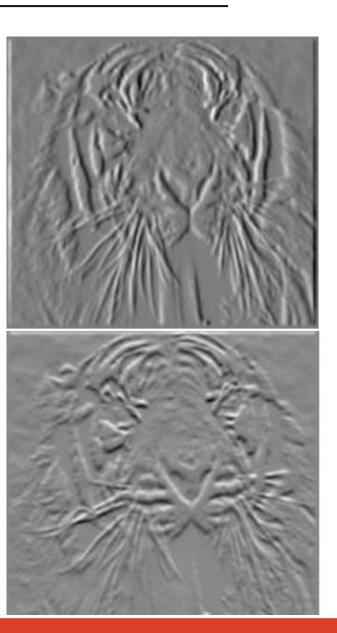
Horizontal derivative



 $\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x,y+1) - f(x,y)}{1}$

*





Partial derivatives: Image gradient

• Image gradient:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• Gradient points in direction of greatest intensity change:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \qquad \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

• Gradient direction (orientation of edge normal):

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

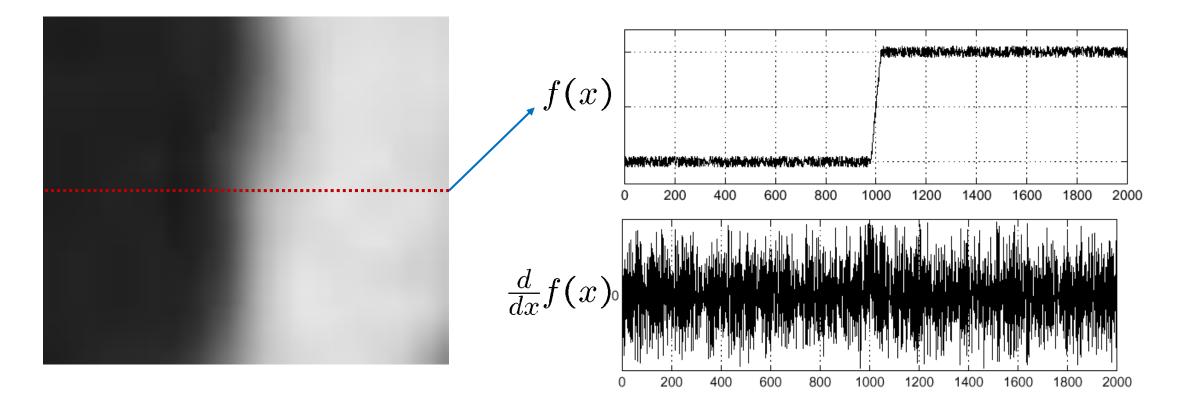
• Gradient strength is defined by its magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient magnitude

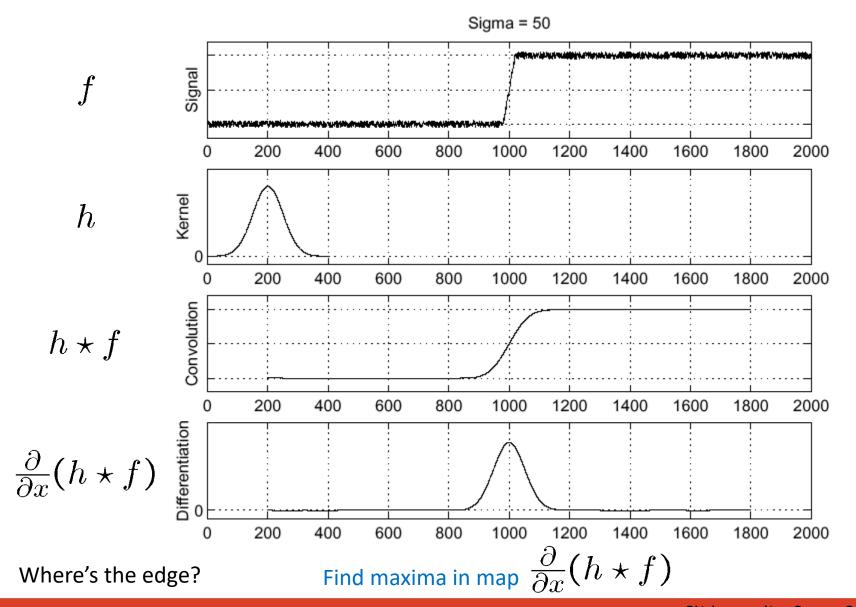
Discrete world is noisy...

- Take a single line in the image:
 - Plot intensities w.r.t. pixels:



So where did the edge go!? Noise gets amplified by derivation...

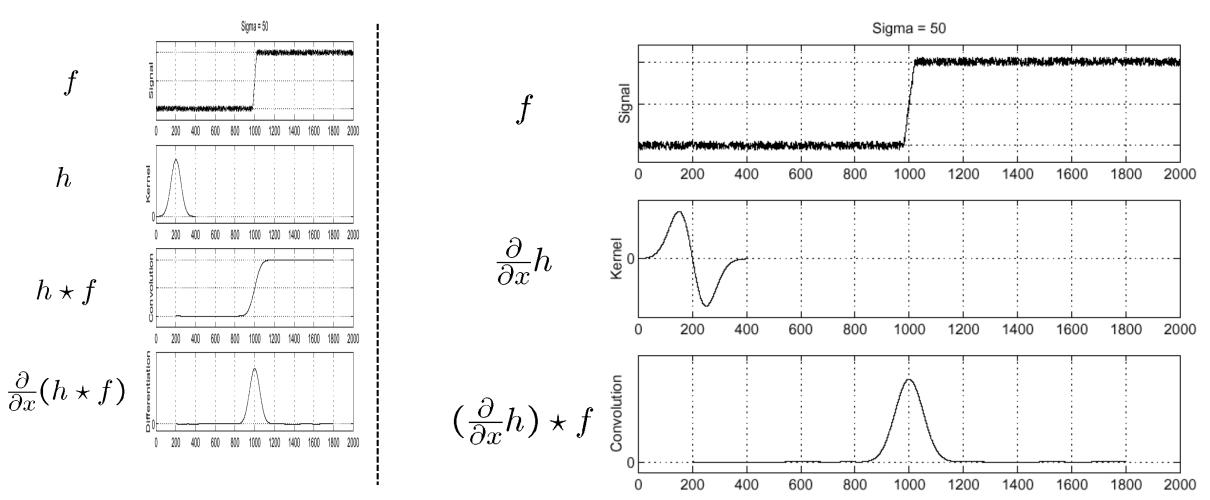
Solution: Smooth the image first



Slide credit: Steve Seitz

Remember convolution properties

• Derivatives: $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

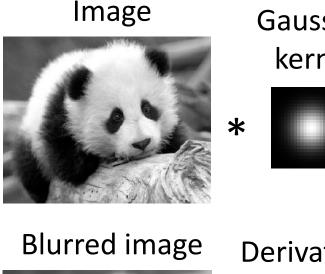


2D partial derivatives – naiive approach

- 1. Smooth the image by a 2D Gaussian filter
- 2. Take derivative w.r.t. x

1 Blurring

2 Differentiating w.r.t. x



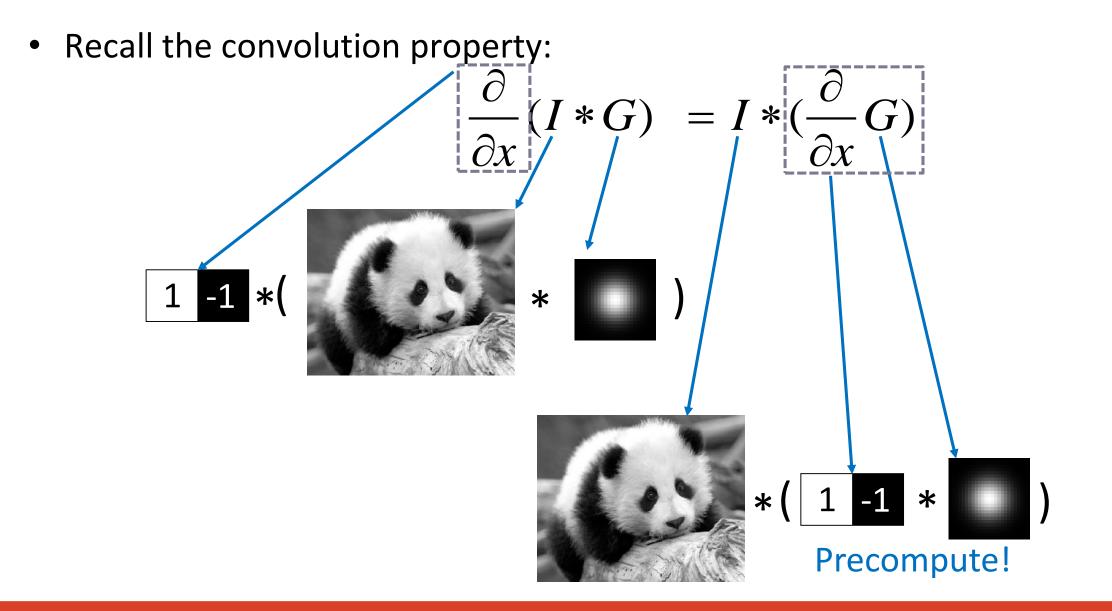
Gaussian kernel

Blurred image

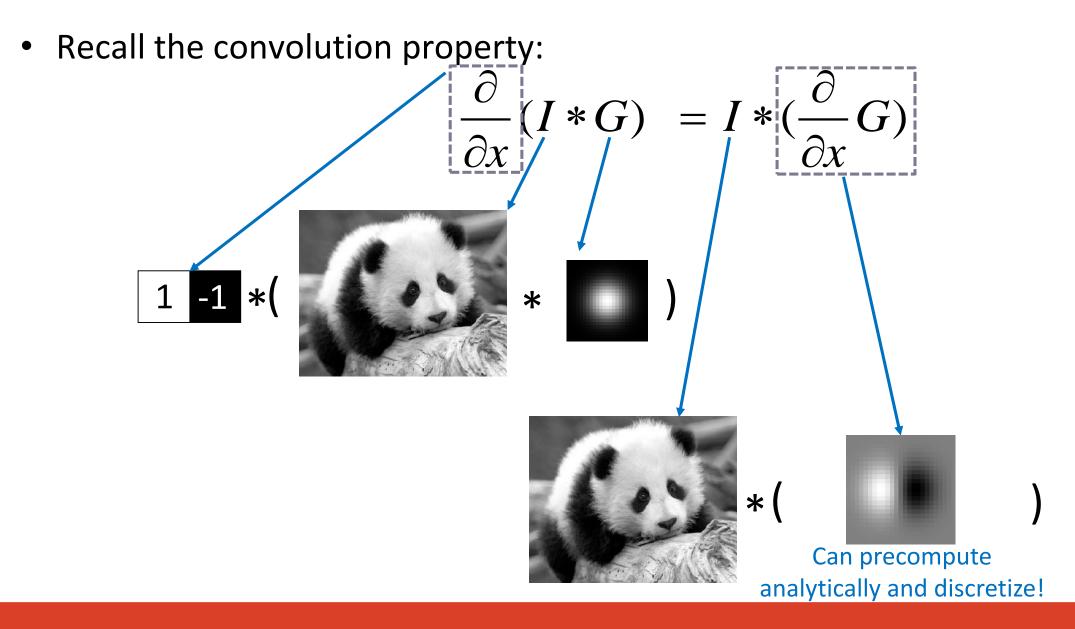
Derivative kernel

Derivative image

2D partial derivatives – smarter approach



Smarter way

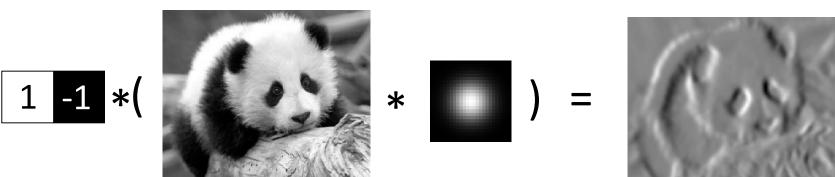


2D partial derivatives – smarter approach

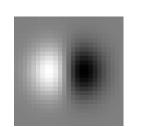
• Recall the convolution property:

$$\frac{\partial}{\partial x}(I * G) = I * (\frac{\partial}{\partial x}G)$$

Naiive:

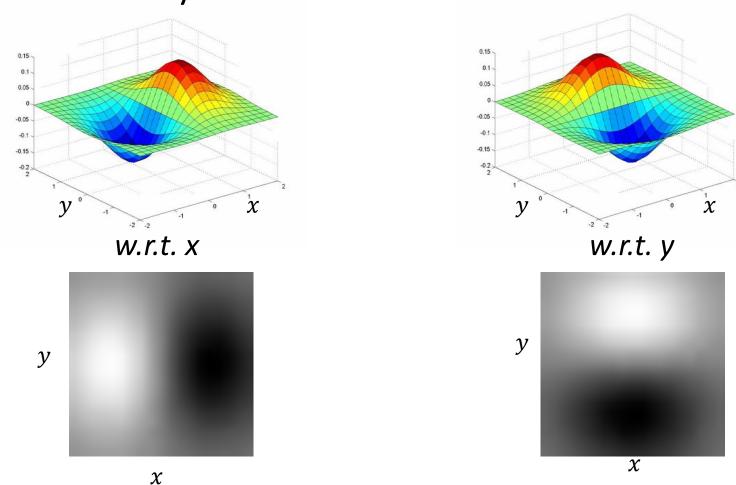


Smarter:

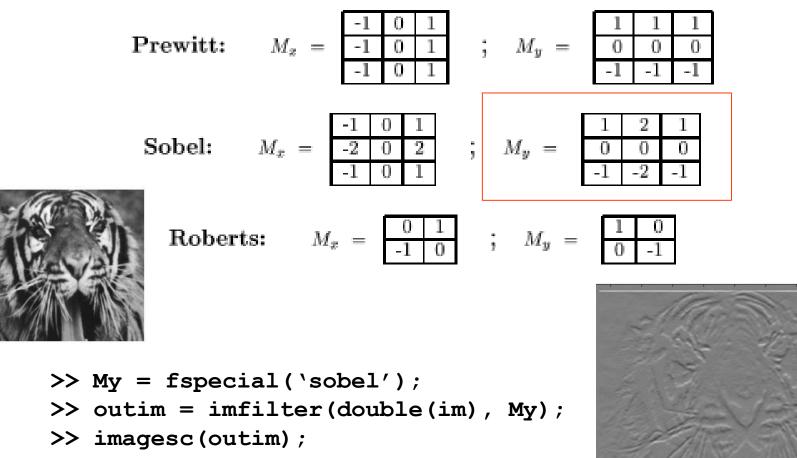


Gaussian partial derivatives

• Convolution kernels for taking partial derivatives w.r.t. x and y:



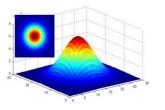
Some other popular kernels

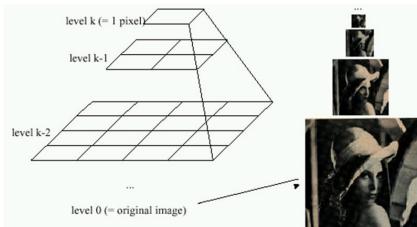


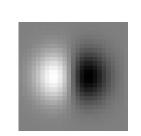
>> colormap gray;

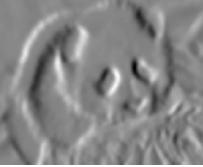
Previously at MP...

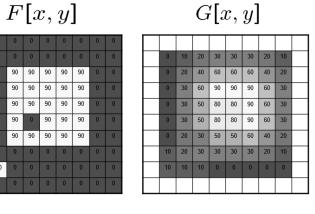
- Linear filters: convolution, correlation
- Nonlinear filters: Median filter \bullet

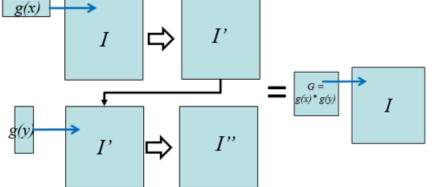












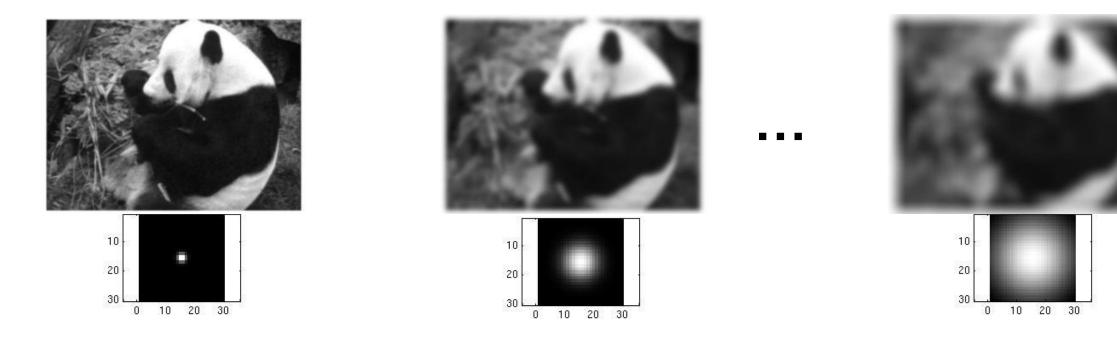
Edges exist at different scales

Depends on what we're looking for...

Thin edges or thick edges (leaves, branches, trunks,...)

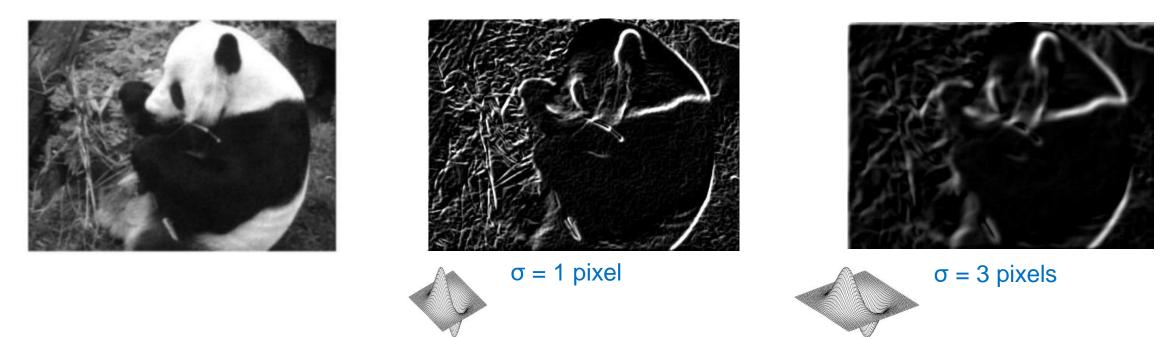
Tuning the filter to the right scale

Parameter σ is the "scale"/"width" of a Gaussian kernel that determines the extent of smoothing, i.e., determines which *edges will be removed*.



Tuning the filter to the right scale

How does σ affect the derivative?



The enhanced/detected structures depend on the Gaussian kernel size.

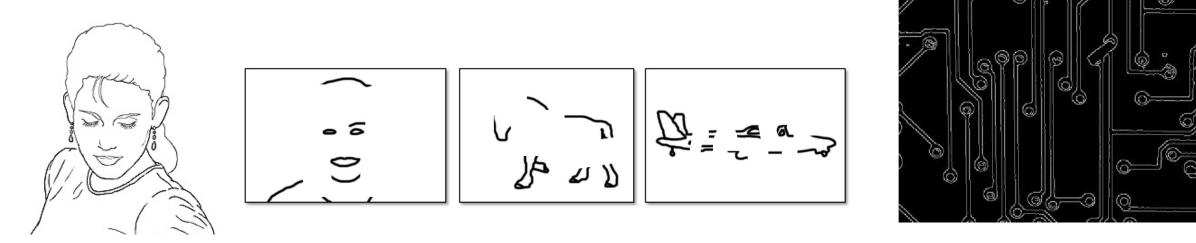
Large kernels: detect edges on a larger scale. Small kernels: detect edges on a smaller scale.

Machine perception

FROM DERIVATIVES TO EDGE DETECTION

Recall: The task of edge detection

• Goal: map image from 2D grayscale intensity pixel array into a set of binary curves and lines.



abstraction

Robust, compact representation

Measurement

Derivative enhances the edges, but these are not *binary curves*.

The task of edge detection

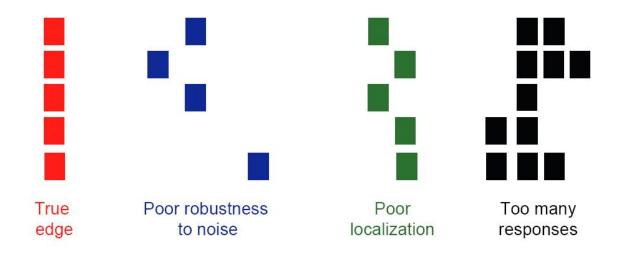
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• Basic approach:

find strong gradients + post process

Designing an edge detector...

- Criteria of "optimal" edge detector:
 - **1. Good detection:** optimal detector minimizes probability of false positives (edges caused by noise), and false negatives (missing true edges)
 - 2. Good localization: detected edges should be close to the location of the true edges.
 - **3. Specificity:** detector should return only a single point per true edge; minimize number of local maxima around true edge.



The Canny edge detector [Canny, IEEETPAMI 1986]

- Most popular edge detector in computer vision.
- Theoretical model of *the edge*:
 A step function + Gaussian noise.
- Canny showed that first derivative of a Gaussian well approximates an operator that optimizes a tradeoff between signal-to-noise ratio and localization on the specified theoretical edge model.

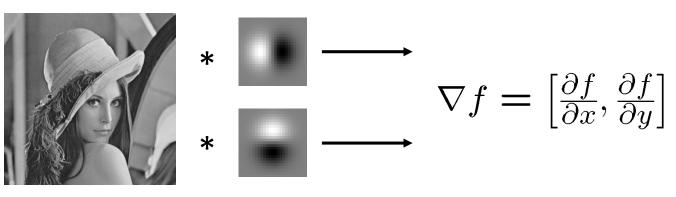
Python:

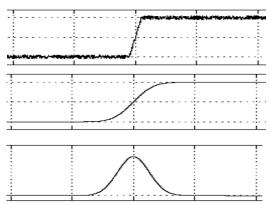
>> cv2.Canny(image, Th_lo, Th_hi,...)

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Canny edge detector

1. Filter image by a derivative of a Gaussian (smooth and enhance)





2. Calculate the gradient magnitude and orientation

 $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$ $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$

3. Thin potential edges to a single pixel thickness

- $m > \Theta$
- 4. Select sequences of connected pixels that are likely an edge

Canny: enhancing the potential edge pixels

Original image (Lena)

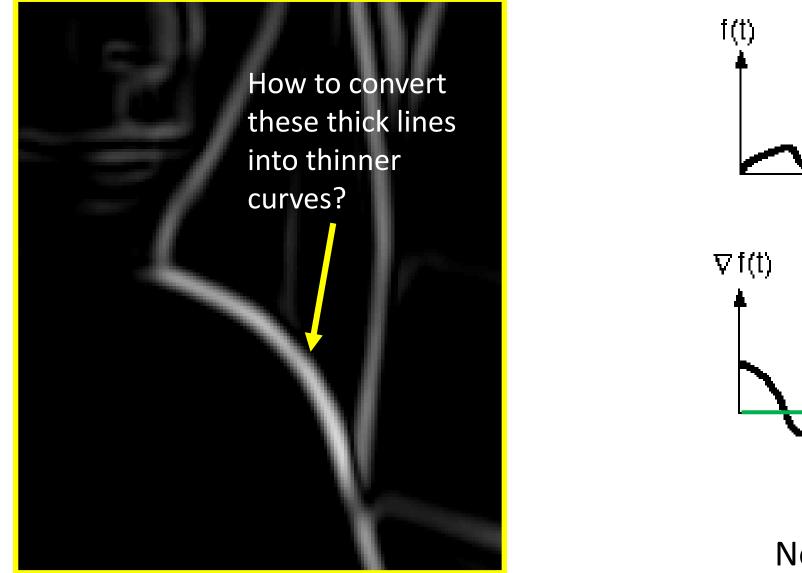
Gradient magnitude

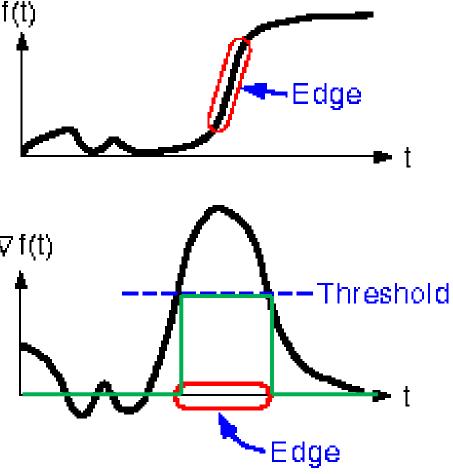
Canny: enhancing the potential edge pixels

Original image (Lena)

"Thresholding": Set magnitudes lower than a prescribed threshold to 0.

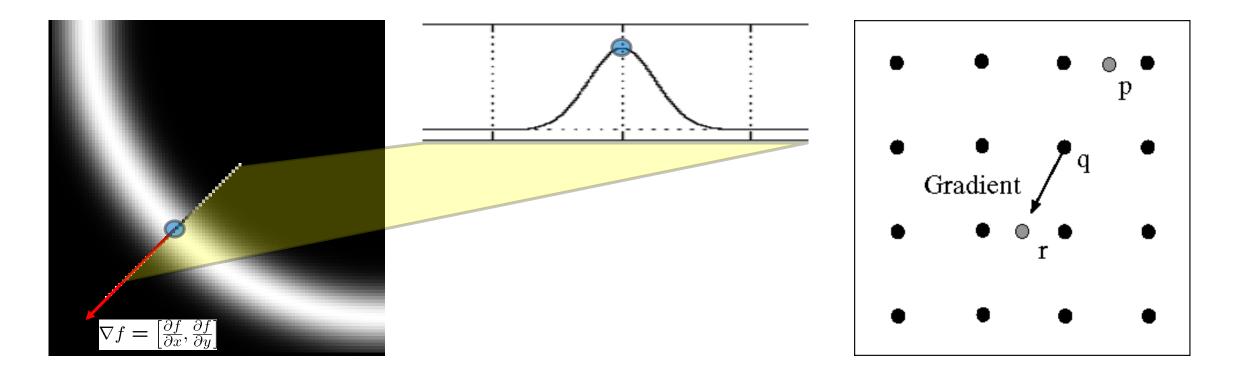
Canny: thinning the edges





Not by thresholding...

Thinning by non-maxima suppression

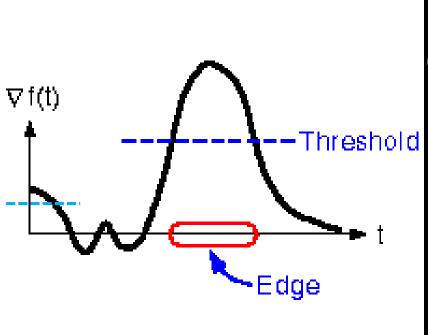


- For each pixel check if it is a local maximum along its gradient direction.
 - Advanced: Actually, for **q**, we should check interpolated pixel values at **p** and **r**.
- Only local maxima should remain.

Canny: thinning the edges

Thinning (non-maximum suppression)

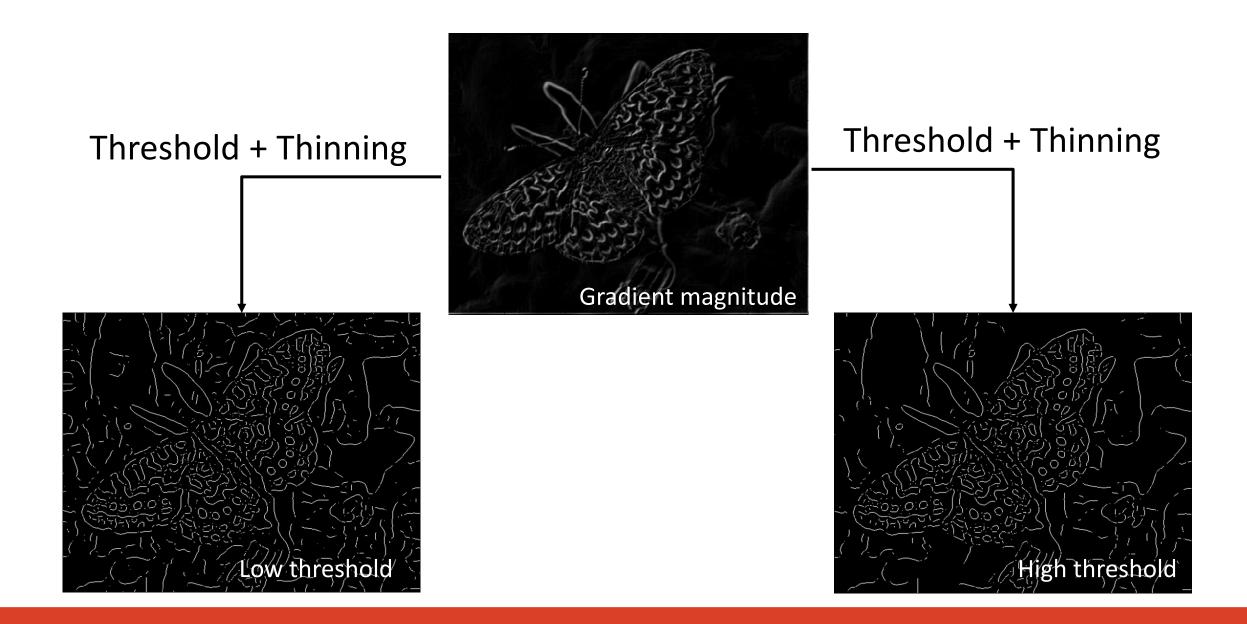
Canny: thinning the edges



Problem: pixels along this edge did not *"*survive" thresholding.

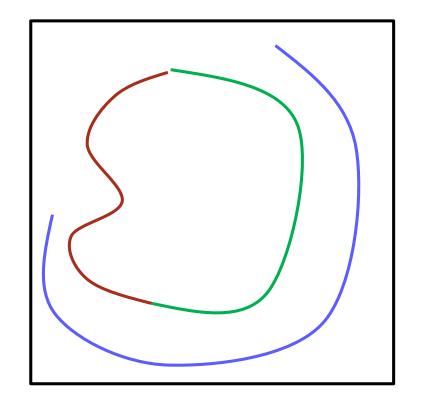
Thinning (non-maximum suppression)

How to select a threshold?



Canny edge detector: Hysteresis thresholding

- Trace each contour separately (e.g., using 4-connectedness).
- Apply two thresholds k_{high} and k_{low}
 - Start tracing a line only at pixels that exceed a high threshold k_{high}.
 - Continue tracing if the pixels exceed a lower threshold k_{low}.
- Typical threshold ratio: $k_{high} / k_{low} = 2$



Hysteresis thresholding

Original

High threshold (strong edges)

Low threshold (weak edges)

Hysteresis thresholding

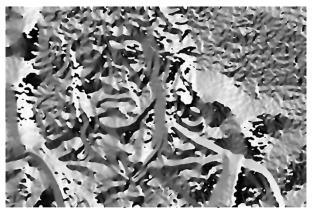
The Canny edge detector in a nutshell

- 1. Convolve the image by a derivative of a Gaussian.
- 2. Calculate the gradient magnitude and orientation
- 3. Non-maxima suppression (NMS)
 - Set low gradient magnitudes to zero to reduce the number of candidates in NMS
 - Thin edges to one-pixel width.
- 4. Trace the edges by hysteresis thresholding
 - Apply a high threshold on the magnitude to initialize a contours and continue tracing the contour until the magnitude falls below a low threshold.

Canny edge detector in "action"

Input image

gradient magnitude



gradient angle

Thresholded by hysteresis

Canny edge detector in "action"

Input image

gradient magnitude



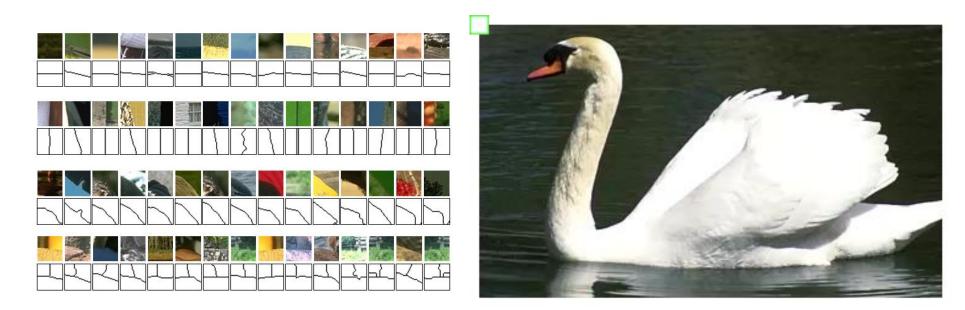
gradient angle

thinned

Thresholded by hysteresis

Beyond Canny edge detector

- Since Canny's publication, lots of new approaches for edge detection by machine learning.
- Essentially, look at patches and learn what an edge is by inferring the structure from intensities.



Sketch Tokens, CVPR 2013. Joseph Lim, C. Zitnick, and P. Dollár

Beyond Canny edge detector

• Recently a CNN used as feature extractor and classifier

Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018

Machine perception

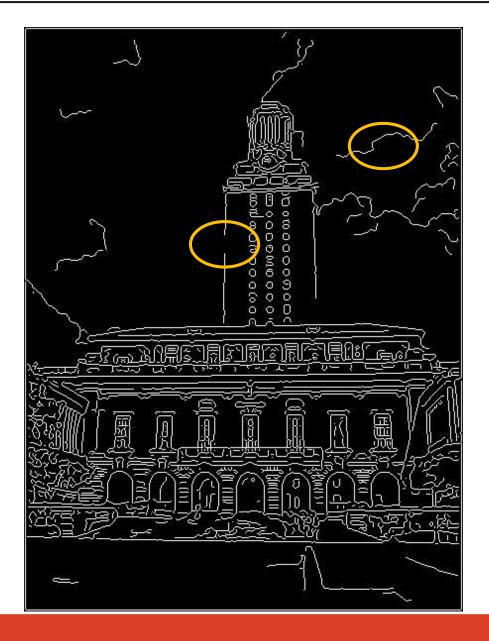
EDGE DETECTION BY PARAMETRIC MODELS

Example: line fitting

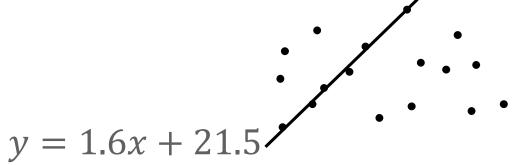
• Why should we fit lines?

Many scenes are composed of straight lines

Problems with line fitting



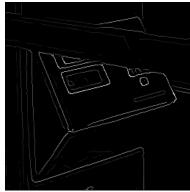
- Noisy edges, multiple models:
 - Which points correspond to which line, if at all?
- Some parts of lines are not detected:
 - How to find a line that connects the missing points?
- Noisy orientation:
 - How do we determine the unknown parameters of true lines?

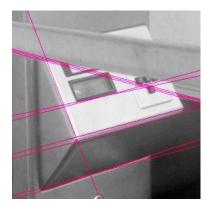


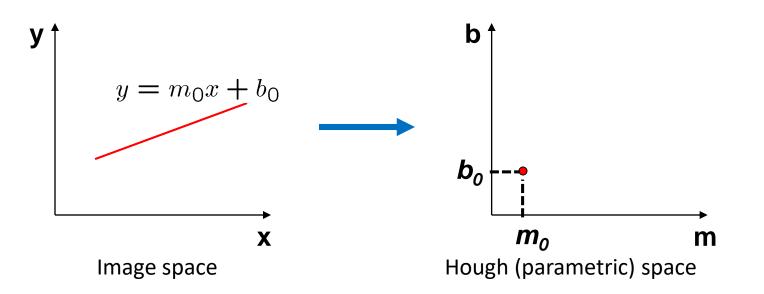
Line fitting by voting for parameters

- Given a set of points, find the lines.
- How many lines?
- Which points correspond to which lines?

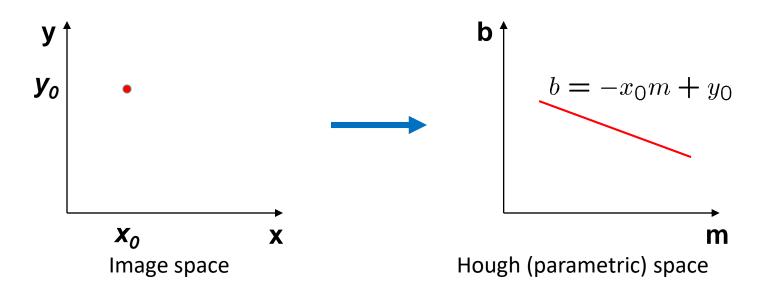
- *Hough Transform* is a voting technique that answers these questions.
- Main idea:
 - 1. For each edge point compute parameters of all possible lines passing through that point
 - 2. For each set of parameters cast a vote
 - 3. Select the lines (parameter combinations) that receive enough votes.



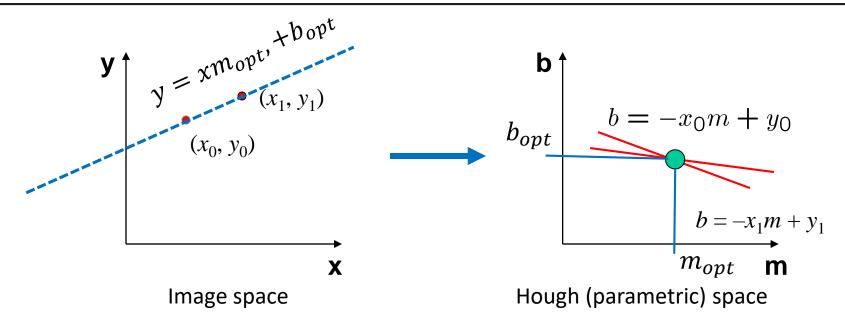




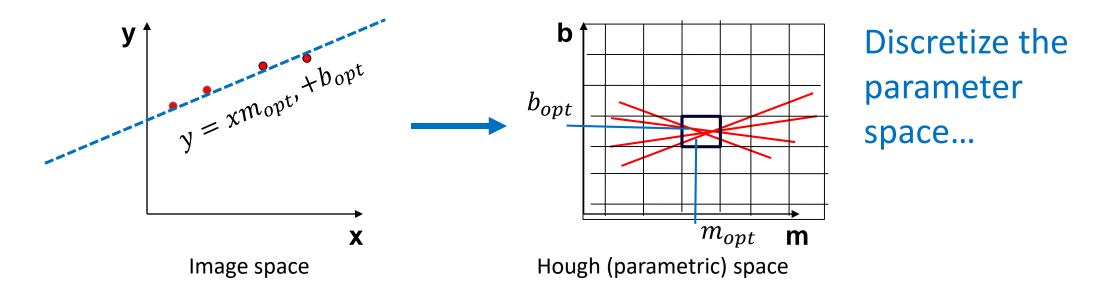
- Connection between spatial (*x*,*y*) and Hough space (*m*,*b*):
 - A line in image corresponds to a point in the Hough space.



- Connection between spatial (x,y) and Hough space (m,b):
 - A line in image corresponds to a point in the Hough space.
 - Mapping from image to Hough space:
 - For a point (x,y), find all (m,b) for which this holds : y = mx + b



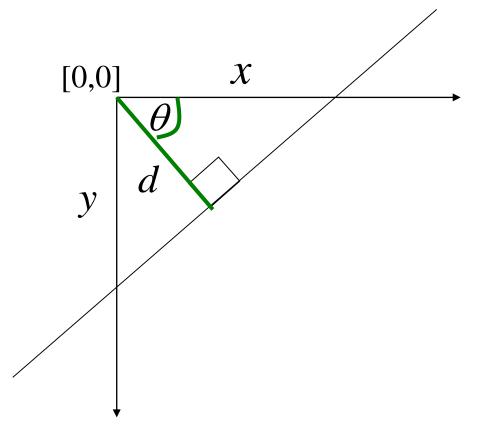
- Connection between spatial (x,y) and Hough space (m,b):
 - A line in image corresponds to a point in the Hough space.
 - Mapping from image to Hough space:
 - For a point (x,y), find all (m,b) for which this holds : y = mx + b



- Connection between spatial (*x*,*y*) and Hough space (*m*,*b*):
 - A line in image corresponds to a point in the Hough space.
 - Mapping from image to Hough space:
 - For a point (x,y), find all (m,b) for which this holds : y = mx + b

Encode the line in polar coordinates

• Issue with Cartesian (*m*,*b*): infinite values for vertical lines!



d : perpendicular distance from the origin

 θ : angle of perpendicular line with x axis

 $x\cos\theta - y\sin\theta = d$

• Point in image \Rightarrow sinusoid in Hough space

Algorithm: Straight lines

Using polar representation:

$$x\cos\theta - y\sin\theta = d$$

Basic Hough transform:

- 1. Initialize $H[d, \theta] = 0$.
- 2. For each edge point (x,y) in image

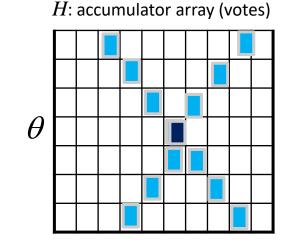
For $\theta = 0$ to 180 // over quantized values!!

$$d = x\cos\theta - y\sin\theta$$

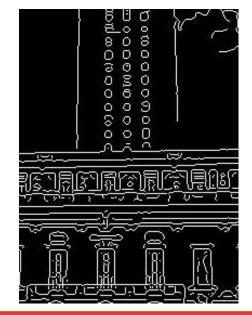
H[d, θ] += 1

- 3. Find local maxima $\{d_{opt}^{i}, \theta_{opt}^{i}\}_{i=1:N}$ in accumulator array $H[d, \theta]$.
- 4. Detected line is defined by: $d_{opt}^{i} = x cos \theta_{opt}^{i} sin \theta_{opt}^{i}$

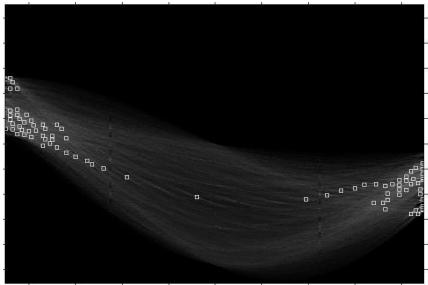
Hough line demo

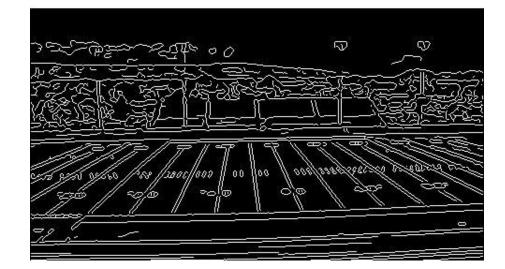


d



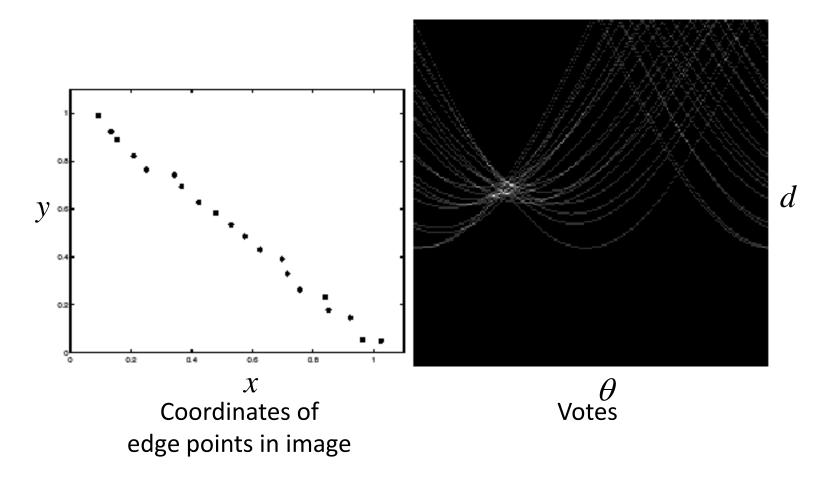
Hough transform in action





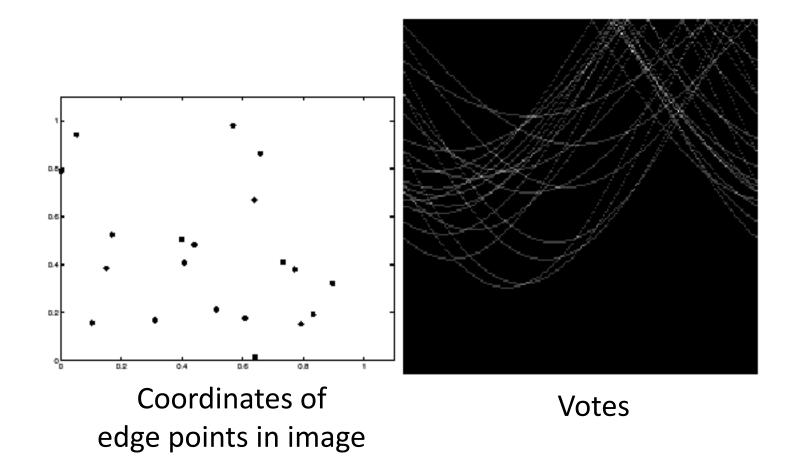
Only the longest segments along each detected line are shown here.

Hough transform: Noise – binning



Are there any significant problems with the noise?

Hough transform: Noise – amplitude of votes



Random points still form some local maxima in the accumulator array!

Hough transform: Extensions

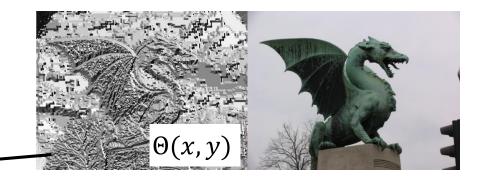
Extension 1: Use the gradient *direction!*

- 1. same as standard HT
- 2. For each edge point [x,y]

 θ = gradient direction at (x,y) $d = x \cos \theta - y \sin \theta$

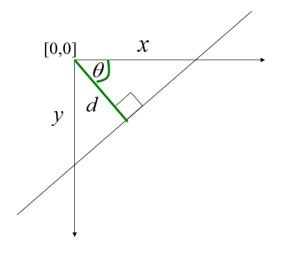
- $H[d,\theta] += 1$
- 3. same as standard HT
- 4. same as standard HT

Reduces the number of degrees of freedom (dof)!



$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$



Hough transform: Extensions

Extension 1: Use the gradient *direction!*

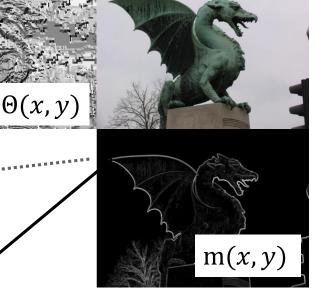
- 1. same as standard HT
- 2. For each edge point [x,y]
 - θ = gradient direction at $(x,y)^{4}$ $d = x \cos \theta - y \sin \theta$
 - $H[d,\theta] += 1$
- 3. same as standard HT
- 4. same as standard HT

Extension 2:

• Assign higher weight in votes to points with large edge magnitude. Instead $H[d, \theta] += 1$, use $H[d, \theta] += m(x,y)$.

• These extensions can be applied in general:

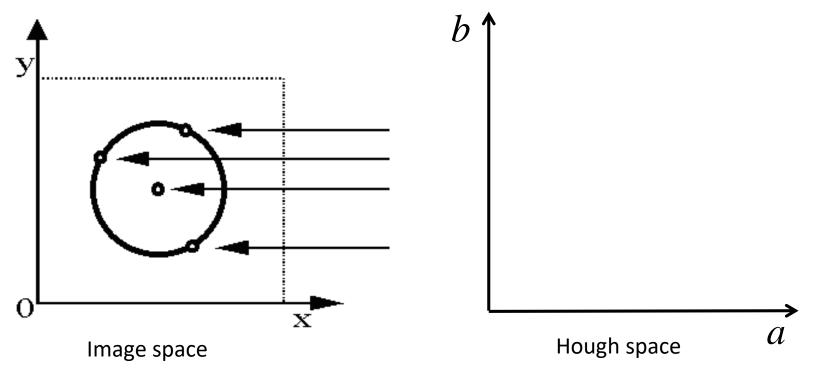
line, circles, squares, general shapes...



• Circle parameters: center (*a*,*b*) and radius *r*

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

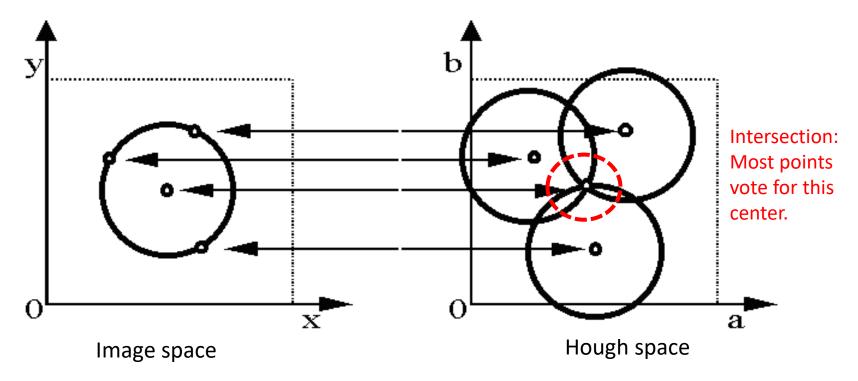
• Example of center detection at known radius r



• Circle parameters: center (*a*,*b*) and radius *r*

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

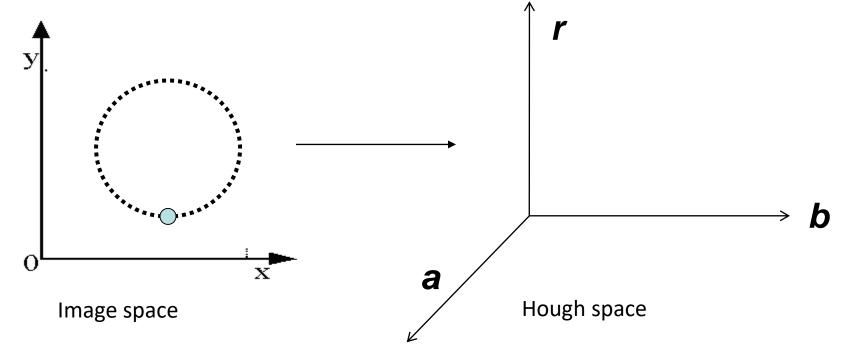
• Example of center detection at known radius r



• Circle parameters: center (*a*,*b*) and radius *r*

```
(x_i - a)^2 + (y_i - b)^2 = r^2
```

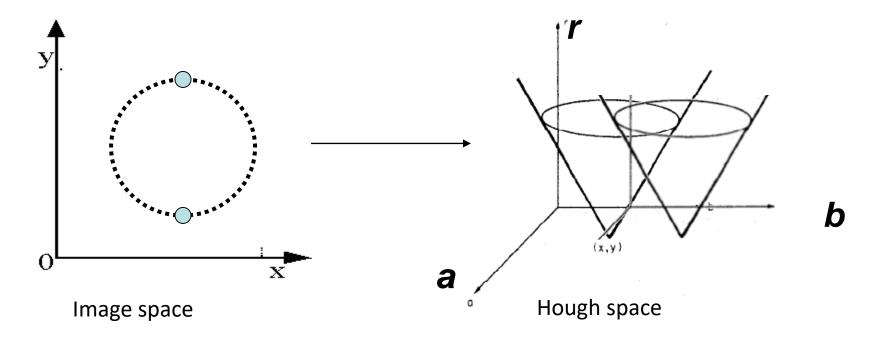
• Unknown radius *r* – How many dimensions in Hough Space?



• Circle parameters: center (*a*,*b*) and radius *r*

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• Unknown radius *r*

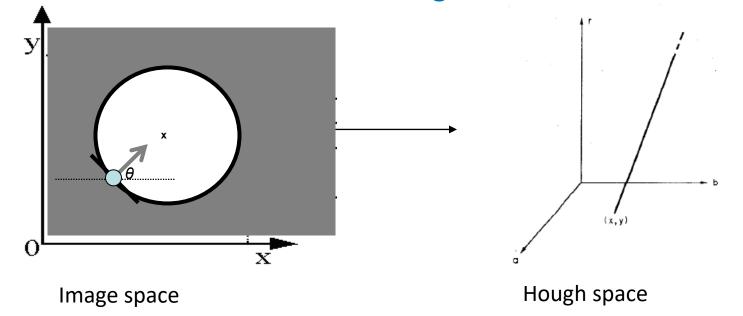


• Circle parameters: center (*a*,*b*) and radius *r*

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• Unknown radius r

But assume we know the gradient direction!



For each edge pixel (x,y) :

For each radius value *r*:

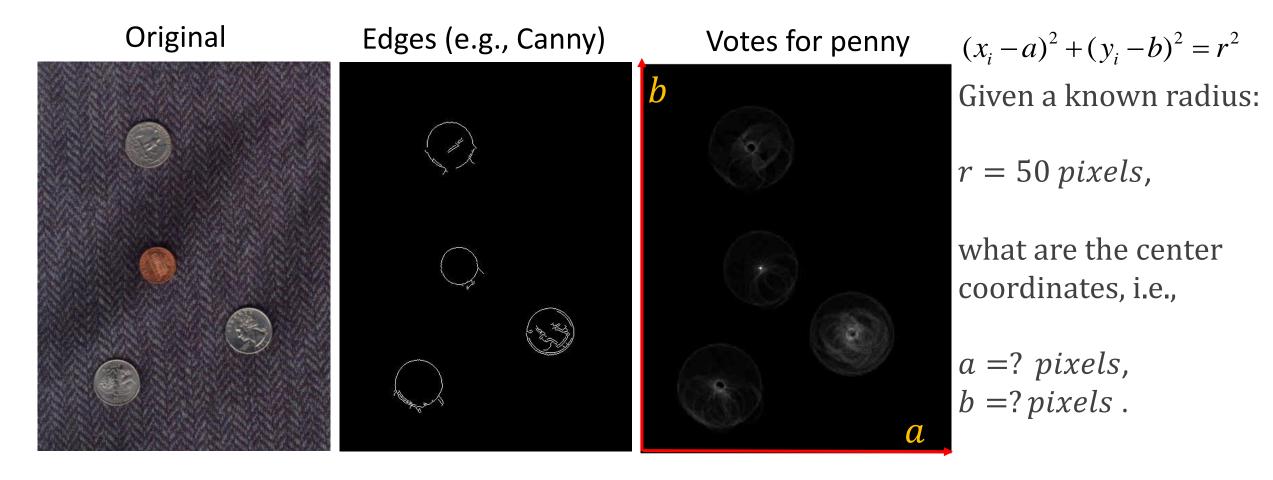
For each gradient direction θ : // or use the estimated direction only $a = x - r \cos(\theta)$ $b = y + r \sin(\theta)$ H[a,b,r] += 1(or the magnitude)

end for

end for

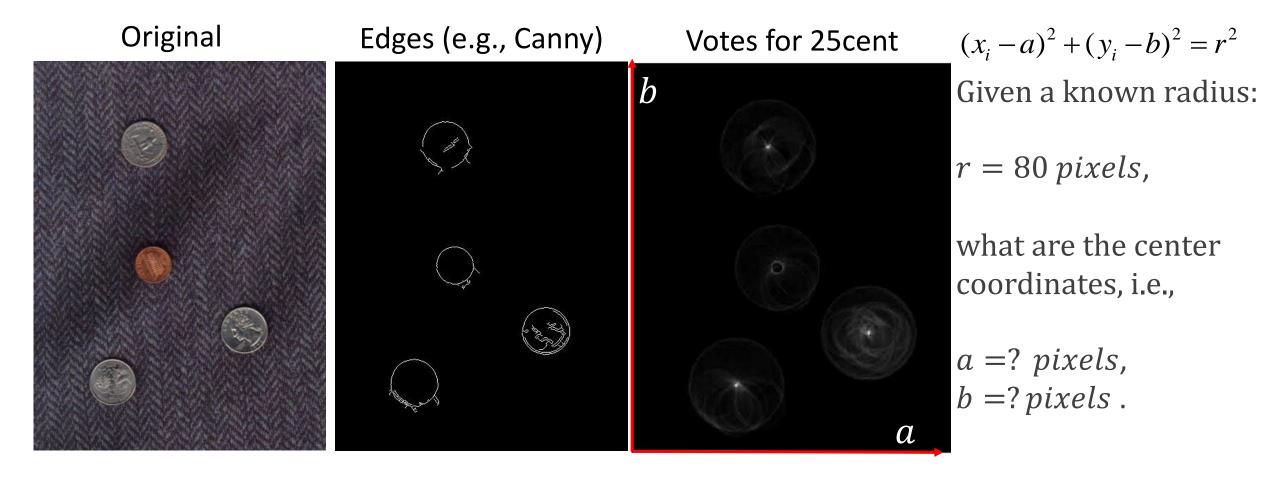
end for

Hough circle detection in action!



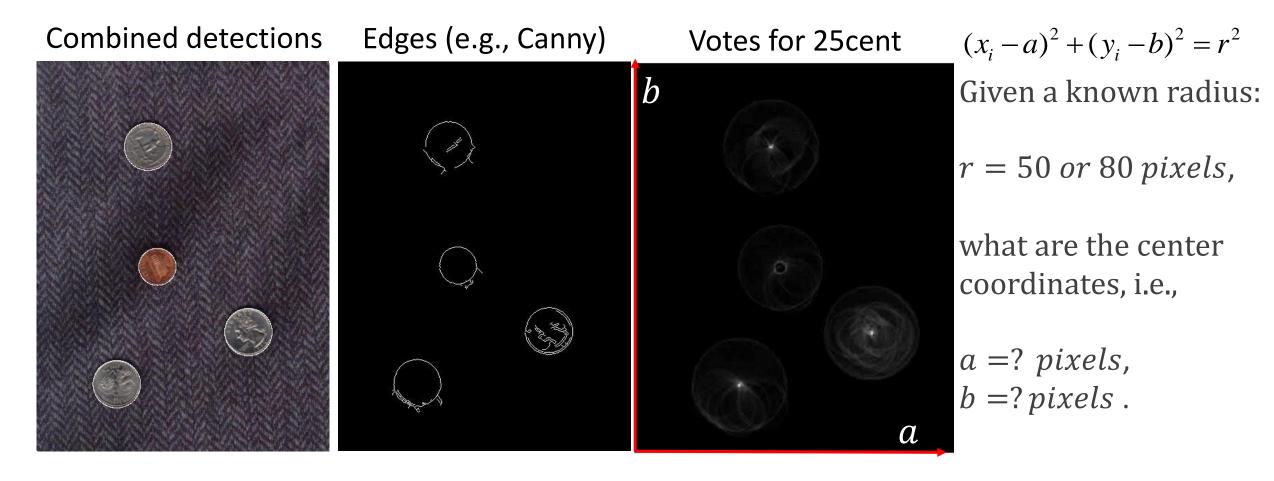
Comment: here we use a separate HT for each coin size.

Hough circle detection in action!



Comment: here we use a separate HT for each coin size.

Hough circle detection in action!

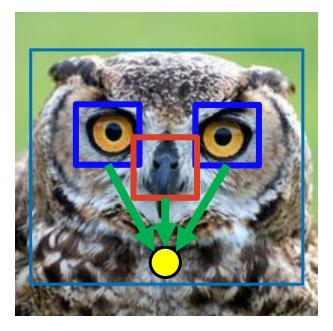


Comment: here we use a separate HT for each coin size.

Generalized Hough transform (GHT)

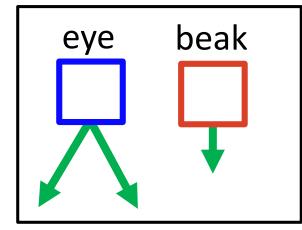
Building a model to detect objects by GHT – intuition:

- Assume we know how to detect parts (recognize+localize), i.e., eyes and beak of an howl. Task: create an howl head detector.
- Encode parts by displacements to the neck center.



The owl head model:

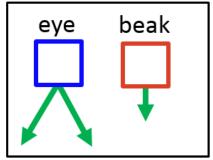
Given a part, where is the neck center?

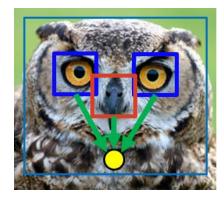


Generalized Hough transform (GHT)

• Detection – intuition

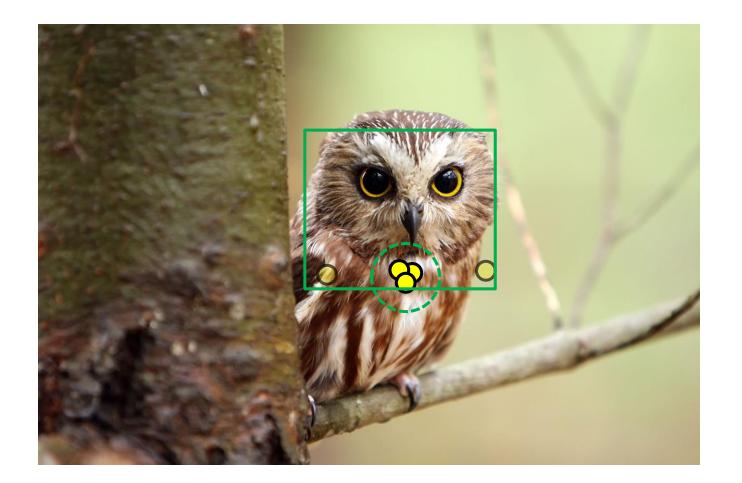
The owl head model:



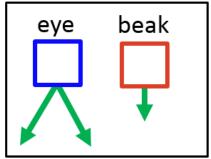


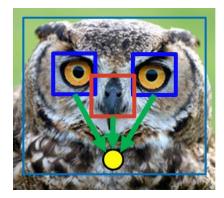
Generalized Hough transform (GHT)

• Detection – intuition



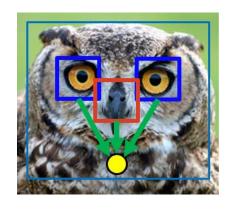
The owl head model:

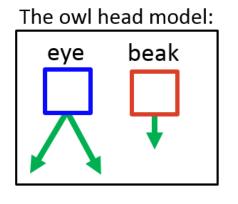


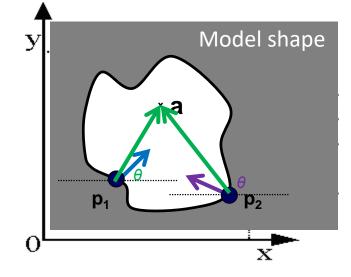


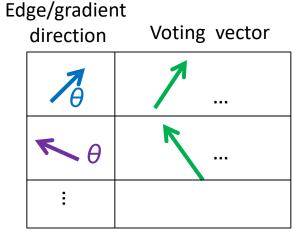
GHT for shape-based models

• Define the shape model by edge points and a reference point.









Model learning:

For each edge point calculate the displacement vector to the reference point:

 $\mathbf{r} = \mathbf{a} - \mathbf{p}_{\mathbf{i}}$

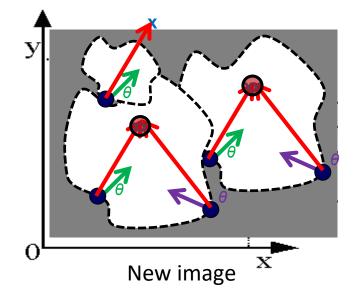
Collect displacements in table, indexed by gradient direction θ .

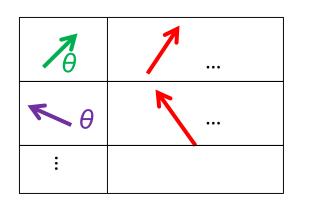
GHT for shape-based models

Detection:

For each edge point:

- Use its gradient orientation θ to index into the table.
- Use the displacement vectors **r** to cast a vote for the center.





Assumption: the only transformation is the translation (orientation+scaling are fixed)

Hough transform line detection: Practical advices

• First minimize irrelevant responses

(use only edges with significant magnitude of gradient)

- Appropriately discretize the parametric space
 - Too coarse: votes from different lines fall into the same accumulator
 - Too fine: losing lines due to noise, collinear points cast votes into nearby (BUT DIFFERENT) accumulators.
- Vote for neighboring cells as well
 - Correct: cast a vote by a Gaussian or a bilinear interpolation
 - Approximate: convolve the voting array by a Gaussian
- Use the gradient direction to reduce the number of free parameters

Hough transform: +/-

<u>Pros</u>

- Each point is processed independently:
 - robustness to partial occlusion,
 - highly parallelizable.
- Robustness to noise: noise will unlikely contribute consistently to a single cell
- Can detect multiple instances of a single model in one pass.

<u>Cons</u>

- Time complexity increases exponentially with the number of free parameters.
- Spurious shapes may generate false local maxima in the parametric space.
- Quantization: Not particularly easy to choose a proper accumulator cell size Application dependent!

References

- <u>David A. Forsyth</u>, <u>Jean Ponce</u>, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja dostopna na spletu)
- R. Szeliski, <u>Computer Vision: Algorithms and Applications</u>, 2010
- R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, 2004
- Kristen Grauman, "Computer Vision", lectures